
The Paradoxical Success of Aspect-Oriented Programming
Friedrich Steimann

Lehrgebiet Programmiersysteme
Fernuniversität in Hagen

D-58084 Hagen
steimann@acm.org

Abstract
Aspect-oriented programming is considered a promising new
technology. As object-oriented programming did before, it is be-
ginning to pervade all areas of software engineering. With its
growing popularity, practitioners and academics alike are wonder-
ing whether they should start looking into it, or otherwise risk
having missed an important development. The author of this essay
finds that much of aspect-oriented programming’s success seems
to be based on the conception that it improves both modularity
and the structure of code, while in fact, it works against the pri-
mary purposes of the two, namely independent development and
understandability of programs. Not seeing any way of fixing this
situation, he thinks the success of aspect-oriented programming to
be paradoxical.

Categories and Subject Descriptors D.2.2 [Software Engineer-
ing]: Design Tools and Techniques – Modules and interfaces;
Structured programming. D.3.2 [Programming Languages]:
Language Classifications – Multiparadigm languages. D.3.3
[Programming Languages]: Language Constructs and Features –
Modules, packages; Control structures; Procedures, functions,
and subroutines.

General Terms Languages.

Keywords aspect-oriented programming; modularization; pro-
gram structure; globalization of variables; independent develop-
ment; readability; software engineering.

1. Introduction
I first encountered aspect-oriented programming (AOP) while
writing my habilitation thesis, via the “detour” of subject-oriented
programming (SOP) [30]. At that time, I was mostly interested in
roles as first class modeling and programming concepts, and al-
though I could see the practical problems SOP and AOP were ad-
dressing, I decided that their relationship to roles––at least the
way I viewed them––was weak.
After finishing my habilitation, I was asked to take over the Soft-
ware Engineering lectures. For Software Engineering II, I decided
to include a short excursion into AOP, partly because I wanted to
find out for myself what it was good for (if not for representing
roles), partly because I wanted to communicate to my students
that object-orientation and Java were not the last words in pro-

gramming. AspectJ was particularly attractive for my purposes
because it came with a compiler and a plugin for the Java IDE I
was using. After fiddling with the versions I managed to get it in-
stalled and my first sample program running. What proved more
difficult, though, was to find a conceptual motivation of AOP that
convinced me (one comparable to how classes, associations, and
roles can be motivated in OOP); unsuccessful as I was, I decided
to stick with the material used for the AspectJ demo at OOPSLA
2002, which was available on the web. My students immediately
bought it.
What impressed me most at that time was the fact that the devel-
opers of AspectJ had undergone the suffering of developing an
IDE plugin that not only allowed compilation without pre-
processing, but also provided tool support allowing me to deal
with the features of the language rather than the technical obsta-
cles to using it. In fact, all other language extensions proposed by
academics I had looked into until that time either remained at the
theoretical level entirely (with very impressive, page long sound-
ness proofs convincing me that there are smarter guys out there
than me, but not giving me any feeling of the practical impact of
the formalism), or came with command level precompilers requir-
ing me to undertake installation procedures so intimidating that I
was sure I would never get it running. The AspectJ people on the
other hand knew what it takes for a new language to be adopted
by programmers: a set of simple concepts attacking a real prob-
lem, and good tool support. In this light, AspectJ was surely one
piece of commendable work.
A little later, I attended a biannual national (German) meeting on
teaching software engineering at universities. Someone had raised
the question, what minimum half life does a new approach need to
deserve to be taught? One highly respected participant said that
we as lecturers should be able to judge the impact of, say, AOP
right away so that there would be no need to wait for first signs of
decay in order to be able to estimate the half life. I wondered why
he used AOP as an example, and asked him for his judgment in
this particular case. He responded by saying he was confident that
AOP would have sufficient impact to grant teaching it. This made
me wonder what made him so sure.
What disturbed me most about AOP at that time was the monot-
ony of examples. In particular, to me the ever-recurrent logging,
tracing, debugging, etc. aspects are all more or less “programming
problems” in that they address concerns that a programmer has to
deal with because he is programming, not because some particular
problem domain or application demands it. This is in contrast to
application classes such as Person, Document, etc., and also
methods such as attend, format, and so on, which all represent
problem domain level concepts. I conjectured that most, if not all
of the programming problems addressed by AOP could either be
tackled by adding a corresponding feature to an IDE (for example,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distrib-
uted for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.
Copyright © 2006 ACM 1-59593-348-4/06/0010…$5.00.

481

tracing as done in Eclipse), or by extending the language with
suitable constructs (for example, exception handling as in Java, or
transaction management as in database languages). I expressed
this in my provocative claim that “the number of useful aspects is
not only finite, but also fairly small.” Although obviously impos-
sible to prove, I thought I could make it plausible by showing that
aspects are not domain level abstractions and thus lack a signifi-
cant source of diversity.
Because my claim was both provocative and unproven, I decided
to test it against a pro-aspect audience and submitted it as a posi-
tion paper to a small European workshop on aspect systems. Not
surprisingly, most of the AOP proponents at the workshop would
not follow my thoughts, and the discussion led, if I remember cor-
rectly, nowhere. However, it was there that I learned that to some
in the community, AOP is all about modularity. To me, this came
as a surprise, mainly because I missed interfaces in the AOP tool-
set, a construct which I had always thought (and taught) to be in-
separable from that of modules. The good thing I took home from
this workshop was that I decided to get myself a copy of a work-
shop paper by Filman and Friedman, titled “Aspect-oriented pro-
gramming is quantification and obliviousness” [23].
When I first read this paper, I thought: “Wow, this is it!” It was
the first paper I had come across that—without putting forward a
particular language—seemed to be more concerned about what
AOP is rather than what it is good for. Hence, it seemed one big
step toward the conceptual justification of the approach and its
constructs that I had been looking for. At the same time, it pre-
sented AOP as a next step in the history of the development of
programming languages, and gave criteria for classifying whether
a language is aspect-oriented. The third thing that struck me, how-
ever, was that the paper’s characterization of aspect orientation
almost completely covered one I had—believe it or not—
independently devised for the purpose of making plausible “Why
most domain models are aspect free” [59], my (vain) attempt to
put an end to the (vain, in my eyes) attempts of aspectizing do-
main modeling and its graphical modeling languages. However,
although I had based my argumentation mainly on the quantifica-
tion property and the resulting second-orderedness of aspect-
orientation, I quickly learned that not all in the community liked
the article by Filman and Friedman as much as I did, apparently
mostly because the notion of obliviousness was too much an invi-
tation to question the modularity property thought to be crucial to
AOP.
My most recent noteworthy encounter with AOP has been at a
conference where someone explained to the audience how he had
used AspectJ to factor out the various passes of a compiler from
the node classes of the abstract syntax tree. As far as I could see,
this inevitably meant that as aspects, the passes needing access to
the data stored in the nodes had to break the nodes’ modularity.
When I remarked that he had just given us a perfect example of
why AOP is fundamentally at odds with modularization, that in
fact I believed that AOP should not be spoken of in connection
with modularity in any other than a negative sense, someone from
the audience responded that I was right, but only if I talked about
“Parnas style modularization.” Given that modularization is a
fairly broadly accepted notion, I thought that this was a pretty odd
thing to say.
To me programming is the process of creating a software artifact
that, by repeated extension, adaptation, and correction, approxi-

mates an ideal solution to a given problem. The more complex the
problem and its solution are, the more programming depends on
recursive (de)composition, that is, on the possibility to repeatedly
divide a problem into smaller parts whose solutions can either be
taken off the shelf or be programmed independently. However,
such an approach poses stern requirements on compositionality; in
particular, it demands that the functionality of the whole is pre-
dictable from the functionality of its parts and how they are com-
posed; because otherwise one has to understand the complete sys-
tem in order to know what it does, making assembly from parts no
easier than creating the software in one piece. To reach this level
of compositionality, each part must come with a sufficiently accu-
rate specification of what it does, and what it requires for doing it.
While there may in fact be different styles of decomposition, the
resulting specifications always involve modules and interfaces.
Surely, keeping to interfaces means restricting the programmer’s
freedom, and programming without bounds (interfaces) is cer-
tainly more fun; yet I believe that for big systems, restriction is
the key to success.
With hindsight, I personally have undergone a development that
may not be so untypical for many like me. I started out trying to
ignore AOP, but it came back to me with sufficient thrust to make
me curious. By looking into it, I found its applicability to be fairly
limited, but when I looked up again, I realized that it had begun to
penetrate all areas of software engineering, at least in academic
circles. Wondering what the key to its apparent success was, I
tried to learn more about it, but the more I knew, the less I could
see how AOP was going to live up to its claims. While this may
not be the end of my personal development, I decided that I had
collected enough material to share my thoughts with others. After
all, AOP is not some shrinking violet that I could wipe out with a
few well-chosen words. Quite the contrary.

2. Pinning Down a Moving Target
When I originally set out to write this tract, I tried to present a
characterization of AOP that was
1. general enough to cover sufficiently many approaches hud-

dling under the aspect-oriented umbrella, while at the same
time was

2. specific enough to be able to base some conclusive argumenta-
tion on it.

I thought this was wise because although each aspect-oriented
programming language (AOPL) comes with its own, formal and
unambiguous definition of what AOP is, there seems to be no one
such definition, not even on an abstract level, that
a) is common to all AOPLs and
b) sufficiently distinguishes it from other, long established pro-

gramming concepts.
One problem with having no single, accepted definition is that it
makes AOP a moving target for its opponents: whenever some
problem is identified, answers of the kind “Ah well, this is a prob-
lem of <insert some AOPL here>, but if you look at, for instance,
<insert another AOPL here>, then you don’t have this problem!”
can easily be generated. I tried to shield the points I was going to
make from frustrating discussions of this kind, by basing my ar-
gumentation on as few defining characteristics of AOP as possi-
ble. I was hoping that my readers would agree that there must be
some such characteristics, or else the subject of the discussion
would dissolve away, at least from an engineering standpoint. Un-

482

fortunately, I did not get further than generating comments of the
kind “While this may be a valid characterization of <insert some
AOPL here> and like languages, it is certainly not one of <insert
some other AOPL here>.” With hindsight, this is what I should
have expected; others much more involved in the subject than I
am have come to the conclusion that capturing AOP is a very dif-
ficult undertaking (cf., for example, Mehner & Rashid [45] and
also the discussions at http://aosd.net/).
Despite the lack of a common agreement of what AOP is, there is
a common understanding of what AOP is good for, namely for

modularizing crosscutting concerns.
However, this understanding reflects the purpose, not the nature
of AOP. What disturbs me most about this is that it forbids me
from deriving myself what AOP is good for, since this is antici-
pated in its definition. In particular, with “modularizing crosscut-
ting concerns” as the definition of AOP, finding that whatever is
considered to be AOP modularizes crosscutting concerns is just
begging the question,1 and finding that it does not implies (via
modus tollens) that whatever I have looked at and found to not
modularize cannot have been AOP—basta! Also, if modularizing
crosscutting concerns is a widespread problem whose solution be-
stows success on the approach, AOP must be a success, simply
because it is by definition solving the problem. If it is successful
without solving the problem, it can still be so for other reasons,
but these cannot be explained by its definition; in fact, it leaves
what is successful undefined.
I don’t find this very satisfactory. Instead, as formulated by Fil-
man and Friedman:

Understanding something involves both understanding how
it works (mechanism) and what it’s good for (methodology).
In computer science, we’re rarely shy about grandiose
methodological claims (see, for example, the literature of
AI or the Internet). But mechanism is important––
appreciating mechanisms leads to improved mechanisms,
recognition of commonalities and isomorphisms, and plain
old clarity about what’s actually happening. (from [22],
Chapter 2, a revised version of [23])

Because “recognition of commonalities and isomorphisms, and
plain old clarity about what’s actually happening” are precisely
what I am interested in, I will need an understanding of the
mechanisms of AOP. For this purpose I will resort to a rather
simplistic capture of how AOP works, willing to accept that it
does not cover all of AOP—in particular, that it ignores ap-
proaches such as SOP that, previous to joining the AOP family,
led an independent life.

3. The Aspect Formula
Perhaps the best known definition of what AOP is (its nature) is
the simple equation

aspect orientation = quantification + obliviousness (1)
put forward in a workshop paper by Filman and Friedman [23]
and only recently repeated in a book on aspect-oriented software
development edited by Filman and others [22]. Obliviousness ba-
sically implies that a program has no knowledge of which aspects

1 an instance of the logical fallacy of that name, also known as petitio

principii

modify it where or when, and quantification expresses the fact
that an aspect can affect arbitrarily many different points in a pro-
gram. One might be tempted to add “precisely which being speci-
fied by the aspect” to the last sentence, but this would make
obliviousness a consequence of quantification, which would not
allow one to be discussed independently from the other. In fact,
while obliviousness has been the subject of some criticism, and in
response to this has been questioned as a defining characteristic of
AOP by its community (see, for example, Murphy and Schwan-
ninger [47]), quantification seems to have been challenged less.
Thus, the sentence,

In programs P, whenever condition C arises,
perform action A.

(2)

which is also from Filman and Friedman [22, 23] and captures
much of the essence of Definition (1) without mentioning oblivi-
ousness explicitly2, seems much more generally agreed upon. In
fact, Characterization (2) specifies in a concise way the effect an
aspect—defined as a pair (C, A)—has on a program P.3
As mentioned in the introduction, I had proposed a slightly more
explicit formulation of Definition (2) independently in an earlier
paper of mine [59]; in particular, that formulation captured a no-
tion of context in which condition C arises, and in which action A
is performed. This context is of particular importance when
speaking about modularity (and thus the purpose of AOP), since
whenever action A is not completely independent of the context in
which C arises, A will require access to this context, possibly
breaking the modularity of the program P. I will therefore assume
in the rest of this essay that both C and A are parameterized by a
set of context variables that are bound to actual program elements
whenever C is satisfied (the existence of the context elements
may in fact be part of the condition).
Note that it is somewhat typical for AOP—although perhaps not a
necessary condition—that the context provided to an action A is
expressed by the aspect (C, A), but not by the program elements
that provide it. By contrast, a subroutine call explicitly specifies
the context (parameters) passed to the subroutine at the call site
(unless the subroutine has automatic access to this context, for in-
stance through global variables). Generally, this means that the
program elements satisfying a condition C are oblivious to which
elements of their context an aspect relies on (they could assume
all, though).

2 In fact, Definition (2) is presented in Filman and Friedman [23] as cap-

turing the quantification part of aspect orientation. From Definition (2)
alone, it remains unclear whether P (or its elements) have knowledge of
C. Filman later added that “the oblivious claim is that real aspect lan-
guages do not require P to mention A” [24].

3 One might argue that this capture of AOP is incomplete in that it leaves
out the structural (as opposed to behavioral) changes made possible by
certain AOPLs (for instance the inter-type declarations of AspectJ). But
the same is also true for other popular definitions of AOP that are of the
kind “when X happens, do Y” (Coyler et al. [12]). Besides, and decisive
for this paper, the possibility to introduce structural changes does not al-
leviate any of the problems I am concerned about: the same line of ar-
gumentation can be applied to a definition of AOP that includes struc-
tural introductions.

483

3.1 Interpretations of the Aspect Formula
Admittedly, the characterization of AOP as captured by Defini-
tions (1) and (2) seems to be influenced by the language definition
of AspectJ. In fact, the definition of aspects as a pair (C, A) and
their effect on programs covered by Definition (2) translates to
the terms of AspectJ as follows:
• P is the execution of a program, which includes the execution

of advice (see below);
• C is a set of so-called pointcuts specifying the target elements

of the aspect in the program and the context in which they oc-
cur (mostly variables, but also stack content);

• A is a piece of advice that depends on the context captured by
C; and

• the quantification is implicit in AspectJ’s compiler/weaver.
Despite the influence of AspectJ, the generality of the above sim-
ple capture of AOP should not be underestimated:
1. First and foremost, it allows full flexibility for different

AOPLs concerning when C is to be evaluated and, conse-
quently, which elements of the program it has access to. So-
called static AOPLs evaluate C at compile (or class loading)
time, whereas dynamic AOPLs evaluate it at runtime. In the
static case, evaluation of C has only access to the elements of
the program text. In the dynamic case, C can range over execu-
tion elements as well as over temporal patterns of these.

2. Second, there are no theoretical bounds to what the condition
C has access to, in particular, what the context may include:
declared and actual types of all kinds of variables (not only pa-
rameters), their values (objects), the receiver of a method call,
the caller, the current state of the program, past states, the call
stack, an event, a sequence of events—C could even be a
predicate over traces [3, 37, 65]. In brief: in Definition (2),
condition C can have access to whatever is allowed by the
AOPL and can be made available by the underlying runtime
system.

3. Depending on viewpoint, action A is expanded to a sequence
of program elements (static view) or to a set of join points (dy-
namic view). In either case, the condition C of an(other) aspect
can range over the elements of A. In other words: actions A can
be elements of programs P, and aspects can be the targets of
aspects. Therefore, Definition (2) is not as asymmetric as it
may seem. Instead, one should be aware that “target”—in the
literature usually referred to as “base program”—and “advice”
are relative terms, or roles of advising: what is the target in one
aspect application can be the advice in another. This is some-
what analogous to the (not unrelated) distinction between ob-
ject language and metalanguage, which comes with corre-
sponding roles [7, 25].

4. In practice, the point nature of join points limits the variability
regarding how the execution of an action (advice) A can be
combined with that of the program elements (join points) trig-
gering it: before, after, “around” (that is, one part before, one
part after), and instead4 seem to be the only options. This is of
course different if the model also allows multi-point patterns

4 Note that allowing an aspect to block execution of its advised join point

is somewhat contradictory to the interpretation of AOP as event-driven
programming [18], in that an event that led to the execution of an aspect
actually does not take place.

[3, 37, 65] as join points. Since Definition (2) does not place
any constraints on the nature of the elements of P other than
that they can be selected by suitable conditions C, this model
of AOP covers multi-point patterns as well.

In fact, with a little flexibility Definition (2) of how AOP works
can even be stretched to be in accord with more recent characteri-
zations of AOP, such as those proposed by Masuhara & Kiczales
[44] or Kojarski & Lorenz [38]. In particular, conditions C can be
interpreted as composition rules governing the composition of dif-
ferent action sets A (representing different concerns) into a com-
posed program P. This would allow Definition (2) to cover other,
so-called symmetric approaches to AOP such as Hyper/J [50], as
well as the inter-type declarations of AspectJ (cf. Footnote 3). In
the context of this essay, however, it is important to note that
these newer characterizations of AOP do not assign it properties
voiding the discussions that follow. In particular, in all but the
most trivial cases the composition rules C (labeled R in [38]) will
likely need some intimacy with the structure (including context)
of the actions A (labeled C in [38]) to be composed.

3.2 But OOP…!
Some proponents of AOP say that trying to nail down AOP to its
mechanisms is premature, or even unfair, simply because an
analogous capture of OOP has long been—or is still—missing,
and that this fact hasn’t compromised OOP or its community.
However, I don’t agree with this argumentation.
Concerning the lack of definedness, I never thought that this was
a problem for OOP. In fact, the first definition of OOP that I
heard is still the one I use today:

object-orientation = abstract data types + inheritance (3)
Surely, this characterization depends on a common understanding
of what abstract data types and inheritance are, but other than
that, I think it’s perfectly OK. In particular, it serves as a broadly
usable criterion for deciding whether some language is object-
oriented or not: all that needs to be done is to check whether it
supports abstract data types and comes with some kind of inheri-
tance. At the same time, this definition is sufficient—respective
definitions of abstract data types and inheritance provided—to in-
fer some properties of OOP. For instance, its modularity property
can be inferred from that of abstract data types, and it can be
shown that OOP has a problem with modularity if inheritance
breaks the encapsulation provided by abstract data types. This
susceptibility to rigorous reasoning is in sharp contrast to the
“grandiose methodological claims” that OOP isn’t at all devoid
of: that object-orientation better captures the real world, that it al-
lows seamless integration of analysis, design, and implementa-
tion, that it leads to productivity gains, etc. None of these claims
serves the “plain old clarity about what’s actually happening”.
But Definition (3) does.

4. Playing with the Options
That Characterization (2) is indeed a very general capture of AOP
can be seen by running through a number of possible formulations
of condition C. At one extreme, C could stand for the condition
that a certain aspect with associated action (advice) A is refer-
enced in the program text. Definition (2) then expresses no more
than the semantics of a standard procedure call:

In programs P, whenever an aspect is referenced,
perform its associated action A.

(4)

484

This is an interesting construction, since it shows that quantifica-
tion can indeed be completely independent from obliviousness: all
places where condition C can possibly arise are explicitly marked
in the program text (cf. Footnote 2). Of course the programmer of
P needs to know which aspects there are, how they are named,
and where or when they should apply; and almost certainly, no
one would accept this style as AOP, since it can be replaced by
ordinary procedural programming; nevertheless, it goes to show
that Definition (2) of how AOP works is quite stretchable.
At the other extreme, C can express some condition that does not
allow a programmer of P to associate elements of P with aspects:
for instance, C could express a random selection, invoking A by
chance (including always or never). This would be expressed by

In programs P, whenever Random indicates it,
perform action A.

(5)

Then, aspect awareness of a program is reduced to the level that
all places in a program may be regarded as implicitly marked, but
performance of A remains uncertain (the “non-certainty of appli-
cation” noted in a different context in “AOP considered harmful”
[13]). This is largely the situation in which the programmer of P
has no knowledge of the presence of aspects or which they are,
but knows that AOP exists and that P may be subject to it; and
also to a certain extent the situation in which the programmers of
aspects (C, A) have no detailed knowledge of the programs the
aspects are to apply to.
Surely, these formulations of C are theoretical extremes that no
practical AOPL will adopt. The question that I find interesting,
though, is whether the conditions C can be cast in such a form
that AOP serves its methodological claims, in particular the
modularization of crosscutting concerns, while at the same time
makes its mechanisms sufficiently innovative to justify its recep-
tion as a new form of programming. I will therefore further ex-
plore the possibilities of tweaking Definition (2).

4.1 Taming Obliviousness
Returning to the first extreme, it is obvious that directly calling
aspects from a program is not AOP, simply because it is indistin-
guishable from procedural programming. However, the program P
need not make explicit reference to the aspects themselves—
instead, it could also reference some third elements B exterior
(that is, not directly contributing) to P that are not parts of the as-
pects, but nevertheless indicate that some aspects may evaluate
these elements in their conditions C, possibly invoking the at-
tached actions A. This would be expressed by the formula

In programs P, whenever condition C arises
where element B is referenced,

perform action A.

(6)

In order to hook an aspect (C, A) to B, B will usually be integrated
into the aspect’s condition C so that Definition (6) collapses to
Definition (2) with the additional constraint that C must check for
the presence of B. As regards the additional program elements B,
annotations can be employed5 (which are in a way outside the
program they annotate); however, if these annotations do not al-
low the inclusion of runtime values, they cannot capture the con-

5 called “abstract annotations” by Laddad [39], because they indicate the

nature of the annotated rather than possible aspects that depend on it;
also referred to as “annotation-properties” by Kiczales and Mezini [35]

text of B which A may need access to6. Note that B need not nec-
essarily occur exactly where A is to be invoked––it can also be at-
tached to a program scope in which C should be checked. For in-
stance, B could be an interface of a module to whose internals
(execution of program elements inside the module) aspect (C, A)
is to be applied.
Using additional program elements B to tag the places where as-
pects may apply gives the programmers of P the possibility to
deny aspects access where it is not wanted, simply by not refer-
encing B (or any other annotation that could be evaluated by as-
pects) in these places. To express where they could apply, how-
ever, the programmer must have some sense of what possible as-
pects might want to do, so as to be able to tag the corresponding
points in a program and also to be able to expose their context
through B, if that is linguistically possible. In fact, referencing B
in a program is more or less equivalent to inserting (or announc-
ing, in case B does not mark the exact position) a dynamically
bound procedure call, the main difference being that there is an
additional condition C guarding this call that is not expressed at
the call site. Also, if B does not capture the context that A may
have access to, A must take access to the context it depends on for
granted.
Referencing some other element B in the program, while keeping
the information about which aspects are hooked to B the secret of
the aspects, adjusts obliviousness to a level at which the pro-
grammer knows that aspects may interact with the points in P
tagged with B (and will not interact with all other points); yet he
does not know which aspects. As with the dynamic binding of
methods in OOP, the surprise induced by this ignorance can be
reduced by specifying contracts that have to be fulfilled by each
aspect advising points matched by B, as has been suggested by,
for example, Clifton, Griswold, Sullivan, and their co-workers
[10, 27, 63] (note that [27] and [63] also impose contracts on the
targets; see the appendix).
But no matter how attractive annotating the targets of aspects as
suggested by Definition (6) may appear, AOP has a problem with
it: for massively crosscutting concerns, annotating every program
element that can be the target of corresponding aspects leads to
widely scattered annotations that are just as annoying as the scat-
tering of code the aspect is to modularize. For instance, with trac-
ing as a crosscutting concern, annotating every program element
whose execution is to be traced is just as annoying as adding the
tracing code (usually no more than the calling of a subroutine) on
site. To avoid this, it has been suggested to use so-called annota-
tor aspects that annotate program elements so that they can be ad-
vised by other aspects [39], as expressed by

In programs P, wherever condition C arises,
add annotation B.

(7)

Obviously, the annotator aspects could be used to add the advice
directly, but this would mean returning to Definition (2), that is,
AOP without annotations. Considering that the proposed use of
abstract annotations is to “[translate] some of the best practices
from the object-oriented world to AOP” [39], and that this transla-
tion requires other aspects to restore the characteristic of AOP, the

6 This is the case, for instance, in Java.

485

suggested tango of aspects and annotations7 looks more like an
egg dance to me, the eggs being obliviousness, quantification, and
explicit procedure calls.8

4.2 Taming Quantification
Returning to the other extreme, thinking of the conditions C as
random may seem absurd. However, for the programmer of P
who is unaware of the active aspects, which of his statements get
advised may indeed appear random;9 for the programmers of the
aspects, if the aspects use generic, intensional expressions for C,
exactly which program elements of an (evolving) program an as-
pect advises is also subject to some coincidence. A first step to-
ward reducing this apparent randomness is to resort to an exten-
sional specification of C, that is, to explicitly listing all program
elements to be advised. This is expressed by

In programs P, whenever execution reaches one of the
points in {p1 , …, pn},

perform action A.

(8)

While this maintains P’s obliviousness to aspect application (the
implicit invocation of A), it requires aspects to repeat explicitly
those parts of a program that they are to advise. As with annotat-
ing targets of aspect application, for massively crosscutting con-
cerns this also quickly becomes a nuisance, the biggest difference
being that the previously scattered references are now all col-
lected in one location. While such a programming technique
(which reminds me of manually maintaining the tables a linker
uses for putting together separately compiled parts of a program)
may be useful for updating (or patching) existing and already de-
ployed programs, it is most certainly not what the AOP commu-
nity envisions.
Generally, the quantification property makes AOP suffer from the
problem that the conditions C in Definition (2) and its variations
are extremely sensitive to changes in the program P, a condition
that has become known under the label fragile pointcut problem
[61] (also called arranged pattern problem in [29]). Some re-
searchers expect that this problem can be addressed by devising
better languages for expressing C (“semantic” pointcut or crosscut
languages [29, 42, 48, 51]; cf. also [4] for the semantics of point-
cuts). However, no matter how “semantic” a selector predicate C
may be: in order to be able to formulate its action in terms of a
programming language, an aspect must make reference to the con-

7 phrased after a talk titled “Metadata and aspect-oriented programming:

It takes two to tango” presented at Java One in 2004
8 Egg dance: “Lightly, nimbly, quickly, and with hairbreadth accuracy,

she carried on the dance. She skipped so sharply and surely along be-
tween the eggs, and trod so closely down beside them, that you would
have thought every instant she must trample one of them in pieces, or
kick the rest away in her rapid turns. By no means! She touched no one
of them, though winding herself through their mazes with all kinds of
steps, wide and narrow, nay even with leaps, and at last half-kneeling.”
J. W. von Goethe, Wilhelm Meister’s Apprenticeship, Book II, Chapter
VIII.

9 Proponents of AOP usually point to possible tool support here: a tool
(such as an aspect-aware IDE) can highlight the potential targets of as-
pects in the program text. However, this highlighting is not without ran-
domness, either: it depends on the availability of the conditions C at ed-
iting time (which is a problem for aspects that are added later), and it is
subject to change without notice, namely when an aspect programmer
chooses to change C.

text it needs access to. I find it difficult to imagine how “seman-
tic” conditions and their context specifications can be automati-
cally mapped to the surface structure of a program. Ultimately, I
believe, semantic referencing as envisioned by Lopes et al. [42]
will require automatic program understanding which, once avail-
able, will revolutionize the entirety of programming, conceivably
making AOP, as well as many other techniques en vogue today,
obsolete.

4.3 Quintessence
It seems to me that its nature makes AOP a rather delicate crea-
ture: when developed to the full, both obliviousness and quantifi-
cation conflict with its goals, but cutting back on them seems to
deprive AOP of its core contribution. Reducing the obliviousness
in a program not only comes close to reducing implicit invocation
of advice to some variation of dynamically bound procedure call-
ing, it also reintroduces the very scattering AOP was to avoid.
Reducing the quantification in aspects ultimately amounts to
maintaining lists of places in a program the aspects are to advise:
the obliviousness of a program to its aspects is therefore bought at
the price of far-reaching intimacy of the aspects with the program,
which thwarts modularization and thus the purpose of AOP. It
may be my ignorance or lack of imagination, but I cannot see how
to get out of this dilemma.

5. AOP from a Software Engineering Perspective
In the previous sections I tried to characterize AOP in abstract
terms, which allowed me to point to some of its problems and to
give reason to my belief that it will be very difficult to fix them
without giving up the essence of AOP. For much of the rest of this
essay I will try to carry over my findings to the real world of pro-
gramming, that is, to software engineering.

5.1 AOP and Modularization
One of the first things that I noted when digging into the body of
available literature is that the AOP community revels in quoting
Parnas, a man whose name is inseparably tied to the concept of
information hiding and whose contributions to program modulari-
zation are respected to this date. In particular, Parnas’s seminal
article titled “On the criteria to be used in decomposing systems
into modules” [55] is almost universally referenced when speak-
ing of the separation of concerns, even though the term is never
mentioned in it. This however is not a real problem, since the
modularization criteria Parnas suggested do serve separation of
concerns. My problem with citing Parnas’s work is that in my
eyes it does not accommodate the AOP form of modularity; if
anything, it forbids it.

5.1.1 Modularity and Information Hiding
This requires some explanation. At the time when Parnas’s cited
article was written, modularity was already a well-established no-
tion, basically known as one that helps manage the development
of large programs by dividing them into separate chunks that can
be developed largely independently of each other:

A well-defined segmentation of the project effort ensures
system modularity. Each task forms a separate, distinct
program module. At implementation time each module and
its inputs and outputs are well-defined, there is no confu-
sion in the intended interface with other system modules.
[…] Finally, the system is maintained in modular fashion;

486

system errors and deficiencies can be traced to specific sys-
tem modules, thus limiting the scope of detailed error
searching. [55], quoting Gauthier and Pont “Designing Sys-
tems Programs” (Prentice-Hall, Englewood Cliffs 1970).

At that time, so Parnas reported, modules typically consisted of
one or more procedures that mapped to a phase or step of process-
ing (as derived, for example, from a flowchart); the data struc-
tures on the other hand, on which the procedures operated, were
shared among the modules and thus were part of their mutual in-
terfaces. Parnas’s contribution to modularization was to deliver a
novel criterion that guided the process of creating modules: each
module should fully encapsulate one design decision so that later
changes of this decision would be less likely to affect more than
the hosting module. Parnas named this criterion “information hid-
ing” ([55], p. 1056), making reference to an earlier paper of his,
titled “Information distribution aspects of design methodology”
[54].
It is instructive to read this paper, too. Much to my surprise, Par-
nas did not write about (the benefits of) information hiding, but
about the detrimental effects of the opposite, namely information
distribution among programmers. In fact, he never even used the
term “information hiding,” nor did he suggest what we know to-
day as “data encapsulation” (which for me had been more or less
synonymous until then10). Instead, he made clear that information
hiding (or, rather, information non-distribution) is not only a de-
sign issue affecting the structure of the product, but also a process
issue: information of how something was implemented should not
be shared among programmers working on different modules, be-
cause this would create untoward dependencies and hamper inde-
pendent development. In fact, in a recent defense of his earlier
work he said that

My early work clearly treated modularisation as a design
issue, not a language issue. A module was a work assign-
ment, not a subroutine or other language element. Although
some tools could make the job easier, no special tools were
needed to use the principal, just discipline and skill.
When language designers caught on to the idea, they as-
sumed that modules had to be subroutines, or collections of
subroutines, and introduced unreasonable restrictions on
the design. They also spread the false impression that the
important thing was to learn the language; in truth, the im-
portant thing is to learn how to design and document.
We are still trying to undo the damage caused by the early
treatment of modularity as a language issue and, sadly, we
still try to do it by inventing languages and tools. [15]

That Parnas’s work was actually perceived that way is expressed
by a contemporary quote from Brooks’s classic “The Mythical
Man-Month”:

D. L. Parnas of Carnegie-Mellon University has proposed a
[…] radical solution11. His thesis is that the programmer is
most effective if shielded from, rather than exposed to the
details of construction of system parts other than his own.
This presupposes that all interfaces are completely and

10 an instance of the eternal confusion of data and information
11 Brooks refers to a technical report here that was a precursor to reference

[54].

precisely defined. While that is definitely sound design, de-
pendence upon its perfect accomplishment is a recipe for
disaster. A good information system both exposes interface
errors and stimulates their correction. ([8], Chapter 7)

At that time, Brooks seems to have favored that all programmers
should see all the material, so as to increase the overall quality of
code and to spot flaws and bugs early. However, 25 years later he
recanted and stated, “Parnas was right, and I was wrong about in-
formation hiding” ([8], Chapter 19), basing his change of mind on
the insight that “information hiding […] is the only way of raising
the level of software design.”

5.1.2 Modularity and Data Encapsulation
Although Parnas—with his suggestions to improve modularity of
designs—did not call for new programming language constructs,
he did suggest that data encapsulation (once more without resort-
ing to this term) is a viable criterion for decompositions respect-
ing information hiding, although not the only one:

1. A data structure, its internal linkings, accessing proce-
dures and modifying procedures are part of a single mod-
ule. They are not shared by many modules as is conven-
tionally done. ([55], the first item in a list of “some specific
examples of decompositions which seem advisable.”; Par-
nas’s emphasis)

To today’s object-oriented programmers, this seems a matter of
course, but at that time, it revolutionized thinking about modular-
ity: it suggested that modules can consist of procedures together
with the data structures on which they operate (ideally hiding the
latter behind the former), and that such a module no longer neces-
sarily corresponds to a certain phase or step of the processing.
This was the first move in the direction of object-oriented pro-
gramming, as Brooks later acknowledged:

Parnas’s information-hiding definition of modules is the
first published step in [a] crucially important research pro-
gram, and it is an intellectual ancestor of object-oriented
programming. He defined a module as a software entity
with its own data model and its own set of operations. Its
data can only be accessed via one of its proper operations.
The second step was a contribution of several thinkers: the
upgrading of the Parnas module into an abstract data type,
from which many objects could be derived. The abstract
data type provides a uniform way of thinking about and
specifying module interfaces, and an access discipline that
is easy to enforce. ([8], Chapter 19)

The third step was the adding of inheritance which, as we know,
breaks modularity of abstract data types (classes). But even with-
out inheritance, programming with abstract data types (that is, in-
formation hiding enforced by linguistic data encapsulation
mechanisms12) is not without problems: taken to the extreme, it
leads to the situation in which a single system level function (use
case, concern, or whatever you want to call it) is distributed
among all modules whose encapsulated data are involved in that
function. This leads to the scattering of functionality that is so
characteristic of object-oriented programming. In this light, I
found it interesting to see that a similar problem was already rec-
ognized by Parnas, who warned us:

12 which is not what Parnas had in mind! (personal communication)

487

If each of the functions is actually implemented as a proce-
dure with an elaborate calling sequence there will be a
great deal of such calling due to the repeated switching be-
tween modules. The first [traditional] decomposition will
not suffer from this problem because there is relatively in-
frequent transfer of control between modules. [55]

Today this reads like a valid criticism of object-oriented pro-
gramming: when trying to understand, or debug, a function of an
object-oriented program, the frequent transfer of control between
modules (classes) is indeed a problem. But can AOP solve it?
Before I proceed, let me make clear that I do understand that there
is a difference between the scattering of code resulting from the
decomposition of a function into subfunctions that are associated
with the data they operate on, and the scattering of code imple-
menting “crosscutting” concerns such as tracing or logging, which
is reflected in more or less identical pieces of code being found in
several places. Also, the implementation of crosscutting concerns
is usually tangled with that of other (crosscutting) concerns,
which is typically not the case for subfunctions. On the other
hand, both the subfunctions and the crosscutting functions access
and operate on data elements held by the objects of the classes
they are associated with; therefore, I believe that the following
thought experiment of applying AOP to the modularization result-
ing from data encapsulation via classes (which AOP applied to
OOP is invariably about) is legitimate.
In order to arrive at a better modularization of concerns, AOP al-
lows that the scattered subfunctions are moved into an aspect. But
if the original design that led to the scattering is guided by data
encapsulation, the subfunctions are assigned to a module because
they operate on the data contained in that module, and because
changing the representation of the data would likely affect the
implementation of the subfunctions. By moving the subfunctions
to an aspect, this data dependency is not lifted, but is either
• moved to the interface between the module and the aspect (if

such an interface at all exists; see below), or is
• left implicit, by granting the aspect general access to the data

hidden in the module.
The former makes evident in the interface the resulting coupling
between an aspect and the original module. A change in the data
structure captured by the module (its formerly hidden design deci-
sion) on which the subfunction and thus also the aspect depend
likely entails a change of the interface and therefore also the as-
pect. Independent evolvability is therefore compromised. The lat-
ter suffers from the same problem, but is worse in that the pro-
grammers responsible for the design decision thought to be en-
capsulated by the module are not aware of the dependency of the
aspect on that decision (because there is no explicit interface stat-
ing this dependency). In fact, granting the aspect the access that it
needs amounts to a globalization of the data contained in the
module. But this is exactly the situation that Parnas found to be
prevailing at the outset of his work: modules hosting phases or
steps of processing, and complex interfaces between modules that
capture the shared design decisions, or dependence of all modules
on global data structures.
Now one might blame me for suggesting an improper use of AOP,
one in which it is misused to implement a questionable design.
Surely, such abuse of concepts is possible in all programming
paradigms. But my main concern is not reverting to some design
ideal thought to be long overcome (the division of a program into

functions corresponding to steps or phases of processing, which
may in fact be justified even in OOP); my main concern is the ex-
istence of a strong coupling between an aspect and its target, par-
ticularly if this coupling is left implicit, that is, not reflected in an
explicit interface; since this impairs independent development.
And this is the same, at least as far as I can see, for all but the
most trivial crosscutting concerns factored out to aspects: when
code is moved out of its context to some other place, it must take
(a reference to) the context that it depends on with it, thereby es-
tablishing a coupling between its old and its new location. Only if
the context that it depends on is already published in the interface
of its old host, independent development will not be compromised
by this move. Given that classes hide design decisions, my feeling
is that this will not often be the case. Therefore, the effect of AOP
is likely less (or worse) modularity and not more (or better).
Now I will not ignore that data encapsulation as realized in ob-
ject-oriented programming languages à la Java is not without
problems. In fact, it is often difficult, or even impossible, to as-
sign procedures to a class so that they depend only on the data
structure represented (or hidden) by that class, and no other. The
availability of C++’s friend functions and so-called multi-methods
(methods whose late binding depends on the dynamic types of the
receiver and the parameters) in other languages provide sufficient
evidence for this. But as far as I can see, modularity problems of
this kind can only be solved by introducing units larger than sin-
gle objects (or their classes) as modules. Splitting a class into a
class and an aspect produces smaller, strongly coupled units; it
leads to more and larger interfaces, which is counterproductive to
improving modularity.

5.1.3 Modularity and Interfaces
For all I know, the concept of a module is meaningless without
that of an interface.13 Interfaces form the borders between mod-
ules across which control flow and data is passed; they specify the
functions that can be called and the variables that can be ac-
cessed.14 Interfaces represent the coupling between modules—
only if the interface between two modules is empty are the mod-
ules completely decoupled. If the interface is not empty, modules
are decoupled to the extent that changes on either side are admis-
sible without notice as long as the interface is kept constant. Note
that this is independent of what is explicitly specified in the pro-
gram text to be the interface: interfaces between modules exist
regardless of what can be (or is) declared by the available means
of the programming language used. However, leaving interfaces
implicit is a bad start for independent development; quite the con-
trary, to ensure independent development, as much must be made
explicit as possible.

13 Both Gauthier & Pont and Brooks above stress the significance of inter-

faces in connection with modules, which has been a consistent theme in
Parnas’s writings. Also, the ACM Computing Classification System
lists modules and interfaces as one common entry (under D.2.2, “Design
Tools and Techniques”).

14 Depending on definition, interfaces also specify protocol, that is, the
sequence in which procedures can be called and variables can be ac-
cessed. Certainly, this information was part of the interface Parnas had
in mind. However, most contemporary programming languages support
only weaker notions of interfaces, namely sets of signatures. The re-
maining information must be communicated using means outside the
programming language (that is, specification or documentation).

488

5.1.4 Provided and Required Interfaces
Work on component-based programming, which relies heavily on
components as modules and on the explicit specification of the in-
terfaces between them, has led to the notion that interfaces come
in two complementary forms: a module can have provided and
required interfaces, and one module’s required interface is an-
other module’s provided interface. A provided interface is basi-
cally a collection of program elements a module offers to its cli-
ents. A required interface on the other hand is a set of program
elements a module needs from some other module for performing
its function. In a system composed of modules, there needs to be a
match between each required interface of one module and a pro-
vided interface of another.
It is instructive to try and apply these terms to aspects (as mod-
ules) and their targets (advised or base modules). Clearly, the
items passed between the target and an aspect (C, A) are captured
by the context attached to (C, A), which qualifies for an interface
specification. But is this interface a required or a provided inter-
face? Because the aspect provides a particular service through
which it extends a program, one might be led to think of it as a
provided interface. However, the matching required interface of
the target remains implicit—the target program does not specify
that it needs something, let alone specify what precisely it needs.
Therefore, there is no visible (as made explicit by a required inter-
face) coupling between the target module and the aspect—the tar-
get does not appear to depend on the aspect.
From a different viewpoint, one might argue that it is actually the
target module that provides a set of program elements, which are
required by the aspect to perform its function. And indeed, the
aspect specifies a required interface in the guise of its condition
C: it specifies the program elements the aspect needs to query
from its target in order to achieve its function (see Ostermann et
al. [51] for a similar view). This reflects the “inversion of depend-
ency” [49] so characteristic of AOP: technically, although the as-
pect complements the target program, the aspect depends on the
target and not vice versa. However, despite this dependency the
target module comes without an explicit counterpart interface
specification: its provided interface is implicit at best.
Seen either way, the target specifies no interfaces that could be
matched with those of its aspects. For the programmer of the tar-
get module this means that there is no visible (explicit) coupling
and, more importantly, that there is nothing to keep constant
across all possible changes of the secrets of the module. This
however ignores the part of the aspects which do specify inter-
faces that must not change if the aspects are to remain unaffected
by target module modifications.
Now one might argue that requiring aspects and their targets to
explicitly specify provided and required interfaces is unfair; after
all, the interface between a class and its subclasses is not only not
divided into a provided and a required interface, it is also mostly
implicit in most object-oriented programming languages in use
today (except for the rather weak notion of declaring members as
“protected”). While this is certainly correct, it is also widely ac-
cepted as substantial and valid criticism of OOP as a form of
modular programming: in fact, as exposed by the so-called fragile
base class problem [46], subclassing breaks the modularity of
classes. Needless to say that subclassing impedes independent de-
velopment unless (a) the implicit interface between a class and its
subclasses is made explicit, or (b) a class and all its subclasses are

assigned to the responsibility of one team, and can thus be re-
garded as one module. Surely, adding interfaces on the targets’
side means giving up much of the attractiveness of the approach,
and packaging a class and its aspects into one module is counter
to the intent of AOP. But denying attacks against the claimed
modularity of AOP by pointing at similar weaknesses in object-
oriented programming is no way out of this dilemma.

5.1.5 Modularity and Dynamic Interfaces
It should be clear that resorting to a purely dynamic AOPL
(whose conditions make no reference to static parts of a program)
is no escape: even if dynamic interface specifications (behavioral
interface specifications [67] for example or event sequence speci-
fications [3, 37, 65]) are supported by an AOPL, in order to also
support modularity (viz. independent development), they will
have to be provided at both sides, the target’s and the aspect’s. In
particular, mutual conformance of the interfaces, as well as adher-
ence of the implementations to their interfaces, are promises made
at development time. After all, this is what modularization is
about.

5.1.6 The Modularity of Aspects
Now one could argue that while modularity of the (crosscut) tar-
get program is sacrificed, modularity of the crosscutting concerns
is won, and that this may be better in certain cases. However,
crosscutting concerns may crosscut each other, and whenever the
actions introduced by an aspect are part of the program and thus
candidates for aspect application (as is the case for instance in
AspectJ), the modularity of aspects is broken in exactly the same
way as that of target programs.

5.1.7 Summary
Introducing explicit interfaces on the target modules’ side (includ-
ing annotations that indicate where aspects can apply) can declare
the coupling with possible aspects, but then, as argued in Section
4.1, aspect activation not only becomes almost indistinguishable
from late bound, guarded subroutine calling, it also re-introduces
the very scattering AOP was to avoid. On the other hand, more
abstract interfaces on the targets’ side would require equal relaxa-
tion of the required/provided interfaces on the aspects’ side, but it
is unclear how an aspect (or any system functionality for that mat-
ter) can be programmed without concretely specifying somewhere
what it needs access to. Once again, it may be my lack of imagi-
nation, but I can see no way of fixing this situation—to me, it ap-
pears that the idea of AOP is at odds with interfaces and thus also
with modularization. (For a detailed discussion of related work,
see the appendix).
To conclude: There may be means other than data encapsulation
to realize information hiding as a design discipline, but one in-
variant is that they must grant independent development. While I
agree that independent development is an important problem of
programming even today, I find it hard to accept that the notion of
a module––as one of the most fundamental to software engineer-
ing––is reinterpreted to the extent that its original meaning is no
longer recognizable. A module is (and unless we manage to dele-
gate programming to machines entirely, will continue to be) a unit
of independent development, for such a concept is (and most
probably always will be) needed. If aspects don’t support it,
please don’t call them modular. Call them something else.

489

5.2 AOP and the Organization of Source Code
Regardless of whether aspects modularize, one could still argue
that they are a good way of organizing source code. Since indeed
every nontrivial application comes with several more or less inde-
pendent criteria according to which its source code could be struc-
tured, and since both scattering and tangling of code is in fact a
nuisance, such is a legitimate goal. In fact, the late Dijkstra,
whose works are also commonly cited in the AOP community
(and seem to be the bibliographical sources of the term “separa-
tion of concerns” [16, 17]), applied considerable thought to the
organization of source code.
But as it turns out, AOP is also at odds with the work of Dijkstra,
in particular the idea of structured programming. In his famous
letter to the Communications of the ACM titled “Go to statement
considered harmful” Dijkstra argued that a programming lan-
guage should set up a coordinate system according to which any
trace of a program is describable as a simple set of coordinates
telling one precisely where the program is, and how it got there
(by knowing the previously executed statement). For a sequence
of statements and for a branch such a coordinate would be the
program pointer (telling one that the program got there from the
statement preceding in program text, including how a possible
prior condition evaluated), for a loop the program counter plus a
loop counter, and for a subroutine the program counter plus an-
other program counter pointing to the site where the subroutine
was called (basically the call stack). Dijkstra stressed that the co-
ordinate system was to be set up automatically by the program-
ming language, not the concrete program (and hence not the pro-
grammer). In other words, program organization should be pro-
moted by the programming language, and not left to the wisdom
of the programmer.
Dijkstra’s complaints led to the maxim that each control structure
of so-called structured programming should have precisely one
entry and one exit point. Goto statements break this condition,
torpedoing all conceivable coordinate systems. Now it can be ar-
gued that the net effect of AOP on any of the mentioned control
structures is equally destructive: since an aspect can plug into just
about any point of execution of a program, one can never tell the
previous (or following) statement of any statement. In fact, as has
been pointed out in “AOP considered harmful” [13], AOP intro-
duces a modern variant of the comefrom statement, which was
once suggested as a humorous contribution to the goto discus-
sion, the joke being that such an inverse form of calling—very
much like the implicit invocation mechanisms of AOP [20]—
renders even small programs completely unreadable [9].
Today, Dijkstra’s demand for a firm coordinate system is no
longer dogma. In fact, as regards the single entry and exit point
criterion, we now know that having multiple exit points from con-
trol structures can improve readability of programs, even though
the reader does not know (without additional pointers) the state-
ment executed immediately before the exit. The reason that we
accept this breaking with formal structuredness is that the alterna-
tive, introducing guards that result in skipping the rest of a control
structure, is often worse. Allowing multiple entry points, on the
other hand, is widely rejected, but not because they formally
break with Dijkstra’s suggested coordinate system, but because
experience has shown that they are rarely needed, yet are almost
always difficult to understand. So we should take Dijkstra’s coor-
dinate system as one attempt at an explanation for what it takes

for a human to be able to map the dynamic control flow of a pro-
gram to its static structure.
Now Dijkstra’s argument can be seen as basically one about the
property of locality in programs. As discussed by Filman and
Friedman [22, 23], many advances in the history of programming
have broken with locality; in fact, even subroutine calling (as one
of the four basic “structured” control structures) does. While
Dijkstra’s suggested coordinate system takes the non-locality of
subroutines into account (by adding to the coordinates a pointer to
the call site), the next step in programming language history, dy-
namically bound procedure calls, require addition of yet another
pointer, namely one pointing to the bound procedure, for without
this, one would not know which the statement executed immedi-
ately before the one statically succeeding the call was. Experience
with object-oriented programming has shown that this advance-
ment leads to problems in program understanding, in particular in
(mentally) tracing program execution. This is worsened by the
fact that in languages with dynamic class loading (such as Java),
the number of possible branches depends on the configuration of a
system, that is, on the set of alternative implementations (sub-
classes) provided at execution time.
The implicit invocation of aspects can be viewed as the next logi-
cal step in this development. In order to know the predecessor (in
execution) of a statement, one must only add a pointer to the as-
pect just called (if any). The problem is that the points in the pro-
gram in which I need this pointer (the selected join points) are not
marked in place, as is the case for a (statically or dynamically
bound) explicit procedure call. Even with tool support annotating
the so-called join point shadows [31] in the program text (that is,
the places where advice may be called), these places depend on
the final configuration of the system, that is, the number and kind
of aspects added (cf. Footnote 9). This is in contrast to the prob-
lem induced by dynamically bound procedure calls, in which I
know, independent of configuration, where I need a pointer to the
called procedure (only to which procedure I may not know).
Thus, AOP adds another dimension of not knowing what just
happened, or where I have come from, to programming. The
question is whether the possible gains are worth the confusion it
causes.
Certainly, more time will have to be allowed before this latter
question can be answered. However, I will allow myself a little
speculation here. While trading understandability of a program for
expressiveness of a language may be in the tradition of progress
in computing, it seems to me that AOP is pushing expressiveness
a little too far. Surely, it is still some way from unconstrained
metaprogramming (which is thought to be too difficult to be mas-
tered by the average programmer), but it may just be that a
healthy trade-off between expressiveness and understandability
has already been found, and that this trade-off does not include
the implicit invocation mechanisms of AOP.

5.3 AOP and the Globalization of Local Variables
In the wake of Dijkstra’s letter, many other programming con-
cepts were questioned along similar lines of argumentation.
Among them, and with direct relevance to AOP, is an article by
Wulf and Shaw titled “Global variable considered harmful” [66].
In it, the authors argue that visibility of variables outside a pro-
gram segment under consideration strain the intellectual abilities
of programmers, because of the phenomena of “indiscriminant
access” and “vulnerability”, where

490

the former reflects the fact that the declaror [sic] has no
control over who uses his variables; the latter reflects the
fact that the program itself has no control over which vari-
ables it operates on. Both problems force upon the pro-
grammer the need for a detailed global knowledge of the
program which is not consistent with his human limitations.
[66]

Transferred to AOP, the “declaror” of a variable is the target pro-
gram, which indeed has no control over which aspects use its
variables, and the “program” is the aspect which, if programmed
without knowledge of the target, “has no control over which vari-
ables it operates on”. Because of its very nature, AOP not only
makes the control flow unobvious from the program text, it also
effectively “globalizes” all variables aspects can get access to.
The conclusion drawn by Wulf and Shaw—that in the presence of
global variables programmers need “a detailed global knowledge
of the program”—is therefore also true for the presence of aspects
(cf. also, for example, the work of Aldrich, Clifton, Kiczales, and
their co-workers [2, 10, 34]).
While the globalization of local variables is a worrying problem,
there is another one related to context that somewhat alleviates it,
but at the same time severely restricts the feasibility of AOP: the
problem of how to get hold of the context needed by an aspect.
While it is difficult enough for a simple aspect to specify in itself
(that is, locally) the context it needs access to in such a way that
the specification applies to all points of a program which the as-
pect is to address (Sullivan et al. [63] provide a list of such prob-
lems found using AspectJ), more complex crosscutting behavior is
much more intertwined with a single location of the target (it may
in fact involve multi-point patterns in both time and space), and
also much more diverse in its appearance among different loca-
tions. Also, in all but trivial cases combining separated concerns
(“weaving”) will be much harder than inserting one concern be-
fore, after or around another (see Ernst [21] for a concrete exam-
ple of this). To phrase it in mathematical terms: AOP is based on
the assumption that crosscutting concerns are scalars that can be
factored out of a vector (a program) without leaving a trace, and
that this factoring out (separation of concerns) can be reversed
without any loss in meaning; however, weaving an aspect into a
program is not always as simple as multiplying a scalar with a
vector.

6. Some Observations on the Use and Usefulness
of AOP
As expressed in some detail in the previous section, my opposi-
tion to aspects and AOP as a programming discipline is based
mainly on my impression that it dismisses basic software engi-
neering principles, and that in order to restore these principles, it
must be stripped of its key characteristics. On the other hand, ad-
hering to these principles is not always compulsory, so that there
are application domains in which AOP should be unproblematic.
However, is seems to me that domains of this kind are not core to
the motivation of AOP; rather, what I find amply are application
examples that, besides suffering from the modularity and structur-
ing problems discussed above, are questionable with regard to
AOP’s net effect on systems. To make my point clearer, I will
contrast examples for which I believe AOP may be useful with
examples of how it seems to be actually used.

6.1 Usefulness of Aspects in Generated Code
First and foremost, AOP’s unpunished use should be granted
where modularity and structuredness are unimportant. This is for
example the case in code generation, where the generated code—
not the source to the generation!—may be aspect oriented without
causing any problems of the above mentioned kind. Thus, it
would seem that natural application areas of AOP are ad hoc lan-
guage extensions (including domain-specific languages) and
model-driven development (MDD). The former could for instance
enhance an existing OOPL with language constructs specific for
security, transaction management, or design by contract. The lat-
ter seems particularly interesting since the primary assets of
MDD, models, usually come with many different views of a sys-
tem which, like aspects, need to be woven together. And yet,
model integration—that is, the integration of the information con-
tained in diagrams of various kinds—is still mostly an open prob-
lem in modeling, and it will be interesting to see whether AOP
can actually contribute to its solution [60].

6.2 Usefulness of AOP for Component-Based Programming
Also, I believe that AOP is useful where proper modules are a
hindrance rather than an advantage. Ironically, this is to a certain
extent the case in component-based programming: namely in the
special (but not infrequent!) situation in which a composite cannot
be formed out of available components without breaking into
them—that is, without disrespecting their designed interfaces. In-
deed, in the non-ideal world of programming practice, available
components sometimes happen to be one bit off what is actually
needed (see Kiczales et al. on open implementations [33] for an
account of such cases), and the alternatives to breaking modular-
ity seem just as unattractive. In these cases, AOP-related tech-
niques may “digest” components (that is, dismantle and reassem-
ble them) to form a new whole, giving this whole a new hull pro-
viding the interface to the rest of the world. Seen this way, AOP
grants the writers of so-called glue code entirely new possibilities.
The price is, obviously, that because the inner components are no
longer modules, they cannot be evolved independently; instead,
the newly formed component must be seen as an atomic whole
that can only be read, understood, and changed in toto. Because
this procedure of digesting components can be applied recur-
sively, it can be abused to destroy all modularity in a system,
turning it into one big monolith comprising what used to be mod-
ules.15 Thus, it must be used with measure; in particular, because
of the above-mentioned lack of independent evolvability associ-
ated with it, I don’t think that it is justified to found a new disci-
pline of modular software development on it.16

6.3 Observed Uses of AOP
While AOP seems to be useful for the above-mentioned coding
problems, it appears that it is mostly used to solve quite different
ones. When looked at more closely, some of these examples show
that AOP can be used to fix problems to which it itself (although
not alone) contributes. I admit that my observations presented in

15 An alternative way of looking at it is that there exist no modules prior to

system composition, and that modularization takes place only after this
composition has been done [34]; see the appendix for a discussion.

16 Aspectual collaborations [41, 52, 53] as promoted by Ovlinger et al. are
an alternative approach to combining aspects and modularity in the
form of components; again, see the appendix.

491

the following are somewhat nit-picking, nevertheless I think that
the motivation of a new programming model should not resort to
examples that can be attacked so easily.

6.3.1 Aspects for Logging, Tracing, and Debugging
Logging, tracing, and debugging are perhaps the canonical appli-
cations of AOP—they are returned to almost universally in papers
on the subject. Although we already have excellent tools for log-
ging, tracing, and debugging at hand that work without AOP (take
for instance the Eclipse IDE), I will accept that AOP can offer an
alternative approach. However, since generally aspects can plug
their advice into just about any point in a program’s execution,
tracing, logging, and debugging become important concerns even
in programs that without aspects would not need them (because
they have been written in such a way that program flow is obvi-
ous from its static structure, or that the program is obviously cor-
rect). In the extreme case, one will find oneself introducing a trac-
ing, logging, or debugging aspect only to trace, log, or debug
other aspects executed. So in a way, while helping to solve a par-
ticular category of programming problems, AOP also adds to
them.

6.3.2 Aspects for Security Issues
An aspect can intrude into a program (its components, or mod-
ules) in order to implement security, but what if it fails to do so?
What if it never intended to? Can security aspects be installed that
check the validity of aspects, that authorize and/or authenticate
them? Perhaps they can, but not only is this a bootstrapping prob-
lem (or are there aspects that can ensure their own security?), but
this also poses the question of what the net effect of AOP on sys-
tem security is. As with tracing/logging/debugging above, not all
applications will explicitly need to address security issues, but if
they are executed in an AOP environment, they had better do so.

6.3.3 Aspects for Program Verification
Aliasing is a well-known problem for the verification of object-
oriented programs, since an alteration of one object’s value (as
addressed through a reference) can change the value of what ap-
pears to be another object, but is really the same object addressed
by a different reference (its alias) [32]. In short, with aliasing the
simple verification problem

{x.a = true} y.a := false {x.a = true}
can become quite hard to prove in a modular fashion, because x
and y might refer to the same object.
With AOP, the problem becomes even worse, because aspects
may access and change the values of variables in their context
even between the executions of two consecutive statements. In
fact, the above aliasing problem can be rephrased as an aspect
problem of program verification: in an aspect-oriented program, it
is unclear how

{x = true} y := false {x = true}
could be proven correct without performing a whole-program
analysis. Once more, aspects can come to the rescue, by introduc-
ing runtime verification of programs (for example, Bodden &
Stolz [6, 62] and Lorenz & Skotiniotis [43]); however, introduc-
ing aspects that verify programs with aspects (including them-
selves) [36] sounds more like an academic exercise than a practi-
cal thing to do. To paraphrase Hoare, one should strive to write
programs in such a way that they obviously contain no bugs; with

AOP, however, the best a programmer not aspect aware can
achieve is write programs that contain no obvious bugs.

6.4 Conclusion
The telephone was first used for broadcasting concerts, and radio
for peer-to-peer communication. The gramophone was thought to
be a replacement for newspapers, and Gutenberg’s moveable type
was designed to reproduce exactly handwritten letters. In each
case, it took many years until a truly successful use of the inven-
tion was found. I wouldn’t be surprised if AOP ended up being
used for something quite different from what it is thought to be
good for today.

7. New Programming?
If I am right and if the problems I discussed above are all real
problems of AOP, why, then, is it such a success? Is it a success?
Measured in terms of the number of successful commercial pro-
jects, it is perhaps still too early to judge. Measured in terms of
the attention it receives, in academic circles in particular, it must
be called a tremendous success. After only a few years, accep-
tance rates of the AOSD conference—the venue of the AOP
community—seem to settle at approx. 20% (a score comparable
to that of this conference (OOPSLA), which is now in its 21st
year), and other major conferences in the field of programming
have installed their own AOP tracks. In fact, within an extremely
short period of time after its inception the number of papers and
theses on the subject has risen beyond what can reasonably be
overseen by a single researcher, a growth that is comparable only
to the greatest revolutions in the history of programming.
There are several possible explanations to this phenomenon. One
is given in Gabriel & Steele’s report “The evolution of Lisp” [58],
in which the authors describe a general evolution pattern of pro-
gramming languages. According to this pattern, a successful lan-
guage requires an acceptance group that is itself successful. Ac-
ceptance in turn requires, among other factors, solving a pressing
problem and having the right cachet. Surely, AOP addresses an
important problem, namely the modularization of crosscutting
concerns, but the jury is still out on whether AOP can actually
solve it (I have certainly written enough about my doubts in this
essay). Regarding cachet, AOP seems to have plenty: it has the
aura of a leading edge technology, it is supported by a number of
OOP luminaries, and it comes with its own fancy lingo. In fact
(and referring to [58] for an example of “right cachet”), seen from
the outside watching someone do AOP is a little like watching
someone own a Mac: one is not really sure of its advantages, but
is willing to accept that it is superior technology.
But there is also a simple economics-based explanation for the
success of AOP in academia. The last revolution in program-
ming—object-oriented programming—is already more than a
generation old, and although many new things have been tried
since, none has had comparable impact. As a result, tremendous
pressure (in the form of program committees expecting new ideas
to be presented and funding agencies waiting for new, promising
strains of research to be financed) has built up, and it is quite clear
to everyone that the next “big thing” will attract enormous atten-
tion and resources. We have all been asking ourselves what this
thing could be.
AOP blesses us with a whole concert of innovations: a new way
of structuring code [64], resulting in new kinds of modules with

492

new interfaces [34], allowing new ways of composition [45], etc.
In fact, there are so many new concepts (or, rather, new variants
of old concepts) attached to AOP that one cannot help but view it
a new programming paradigm. Therefore, from a purely phe-
nomenological standpoint it certainly qualifies as the next big
thing in programming, as the “post-object programming” mecha-
nism [20].
Economically, the last century ended with the insight that tradi-
tional laws are not easily put to rest: the much praised “new econ-
omy” turned out to have some really old problems. “Old” modu-
larity, interfaces, and independent development are so fundamen-
tal to disciplined programming that it is difficult to imagine how
they could be replaced with new variants. Instead, it may be that
the belief in AOP is just a belief in “new programming.”

8. Conclusion
Given that AOP has set out to modularize crosscutting concerns
(its methodological claim), but by its very nature (its mechanics)
breaks modularity, I think the current success AOP enjoys is
paradoxical. For all I can see, this paradox cannot be resolved by
adjusting the mechanics of AOP so as to respect modularity, since
then whatever remains of it appears to be only mildly different
from other programming techniques currently not thought of as
being aspect-oriented. As a way of organizing source code, AOP
has its merits, namely the “localization” or “compartmentalizing”
[40] of code belonging to one concern in one place, but almost
ironically, this requires sacrificing locality (“local in that [a state-
ment] was almost always proximate to the statements executing
around it” [22], p. 22) and thus structuredness in Dijkstra’s sense.
The net effect on program understandability is not indisputable.
I would feel much better about AOP if it gave up its “modulariz-
ing the un-modularizable” [40] promise and instead focused on
blending its key concepts with those of other programming mod-
els17, reserving its unbridled use for coding problems for which
modularity and structuredness are no issues. Alternatively, it
could provide us with a definition of what it is that is consistent
with what it aims to be good for.

17 the coherence requested in the call for this conference!

Epilogue
If you think that my claims are polemic, or those of a cynic, or of
an envier, I will agree, yet only to the extent of admitting that
they are somewhat overstated. But why am I doing this?
During my works on my doctoral thesis in Medical Informatics
back in the early nineties, I looked into Lotfi Zadeh’s fuzzy set
theory. At that time, the theory was already a generation old, and
Charles Elkan’s “The paradoxical success of fuzzy logic” [19]
had just appeared. In the same year, James Bezdek wrote the fol-
lowing in the editorial of the inaugural issue of the IEEE Transac-
tions on Fuzzy Systems:

Every new technology begins with naive euphoria—its in-
ventor(s) are usually submersed in the ideas themselves; it
is their immediate colleagues that experience most of the
wild enthusiasm. Most technologies are overpromised,
more often than not simply to generate funds to continue
the work, for funding is an integral part of scientific devel-
opment; without it, only the most imaginative and revolu-
tionary ideas make it beyond the embryonic stage. Hype is
a natural handmaiden to overpromise, and most technolo-
gies build rapidly to a peak of hype. Following this, there is
almost always an overreaction to ideas that are not fully
developed, and this inevitably leads to a crash of sorts, fol-
lowed by a period of wallowing in the depths of cynicism.
Many new technologies evolve to this point, and then fade
away. The ones that survive do so because someone finds a
good use (= true user benefit) for the basic ideas. [5]

The timescale he assigned to his observation (specialized to fuzzy
models) is depicted in the figure above (reproduced from the edi-
torial [5] with kind permission by the IEEE).
Now reading Bezdek’s observation in the context of this essay not
only uncovers its author as a cynic, but also as one who hasn’t re-
alized that he is as much part of the game as the ones he criticizes
for playing it. Yet the enthusiasts should forgive him, for his role
is not an unimportant one: the earlier the depth of cynicism is
reached, the sooner the true user benefits are discovered, and the
sooner AOP can converge to the asymptote of reality. Sometimes,
to be truly good, good cops need bad cops, so here I am, ready to
take the bashing.

© 1993 IEEE

493

Acknowledgments
I am indebted to Alexander Pretschner, Colin Atkinson, Eric Bod-
den, and especially Stefan Hanenberg for their suggestions on im-
proving the original manuscript. Also, fourteen anonymous re-
viewers spent their valuable time helping shape the content of this
essay with their detailed comments. Needless to say, views dif-
fered greatly, and the sometimes conflicting proposals were diffi-
cult to integrate; yet, all expressed opinions and remaining mis-
conceptions are exclusively my own.
Finally, I would like to thank my shepherd Richard P. Gabriel for
conveying his sense of essayness to me, and for helping me form
my many points into a cohesive argument.

Appendix: Known Attempts to Restore Modularity
in Aspect-Oriented Programs

Pointcut Interfaces
A workshop paper by Gudmundson and Kiczales first proposed to
reduce the adverse effect AspectJ style AOP has on modulariza-
tion (information hiding) by moving the pointcut definition closer
to the target modules, that is, in proximity of the places where
they match [28]. For this purpose, it introduced what its authors
called pointcut interfaces: basically collections of pointcut signa-
tures (pointcut name plus argument types). According to their
suggestion, the definition (implementation) of the pointcut inter-
face, that is, the provision of a concrete pointcut expression, is the
responsibility of the module that exports the interface, which can
be a class, a package, or a whole program. This means that the
declaration and the definition of the pointcut are contained in the
same syntactical unit, but outside the aspects that depend on it.
Particularly if this unit is a class, it should be comparatively easy
to maintain the contract of a pointcut interface (keep the interface
constant) when the definition of the class is changed. In order to
allow independent development of target modules and aspects,
pointcut interfaces should be defined together with all other mod-
ule interfaces—that is, at the project’s outset (with modifications
possible as the design evolves).
It is not obvious to me why the idea of pointcut interfaces, which
was picked up by other authors (for example, [1, 2, 27, 63], all
discussed in the following subsections), appears to have not been
pursued further by Kiczales, who now seems to favor other kinds
of aspect interfaces ([34]; also discussed below). One possible
reason for this may be that in order to have the linguistically en-
forceable effect of pointcut awareness, it is not sufficient that
pointcuts reside in the proximity of the target modules they apply
to: rather, the aware have to state explicitly what they are aware
of. This however would amount to a kind of (target) tagging
(comparable to that of classes declaring to implement certain in-
terfaces) that would reduce obliviousness and increase intimacy
[20, 63] as well as scattering to levels thought to be incompatible
with the original idea of AOP. On the other hand, just keeping
pointcut definitions separate from the aspects depending on them,
in some third place but without any reference from the code they
quantify over, is not a big improvement over keeping them within
the aspect.

Open Modules
Aldrich notes that in order to retain some contribution of AOP
while at the same time respecting the “intended information hid-

ing boundaries” (aka interfaces) a compromise needs to be found
[1, 2]. His so-called Open Modules enables aspects to advise all
external uses of program elements exported in the module’s pro-
vided interface, as well as internal joinpoints that are declared
public (“open”) by that interface. All other intrusions from as-
pects, including advice on internal use of published elements, are
prohibited. Because in Open Modules all interfaces toward an as-
pect are explicit, a module can hide the information considered as
its secret behind these interfaces, allowing it to evolve independ-
ently from aspects.
As Aldrich himself notes, the pointcut interfaces of Open Mod-
ules can be thought of as definitions of extension points and the
execution of advice at these points as a kind of callback to client-
provided functions [1] (which lets the pointcut interfaces appear
as required interfaces; cf. discussion in Section 5.1.3). In fact, as
pointed out by Aldrich [2], “explicitly exposing internal events in
an interface pointcut means a loss of some obliviousness in the
distributed development case, since the author of the module must
anticipate that clients might be interested in the event.” But modu-
larity is all about distributed, independent development (see Par-
nas [54, 55] and also Section 5.1), and the price for modularity is,
once more, the introduction of some “pluggable” procedure call
through the back door.18

Crosscutting Interfaces
Griswold et al. suggest the introduction of crosscutting interfaces
(XPIs) [27] as interfaces “that base code designers ‘implement’
and that aspects may depend upon” [63]. For this, they assign de-
sign rules to XPIs as a kind of contract which the programmers of
the base code must observe. At the aspects’ side, each XPI comes
with a “syntactic part” that exposes the signature of named point-
cuts, but not its “hidden implementation” ([27], p. 54), that is, the
part that specifies the concrete pointcut expressions. Note that
storing the implementation in the interface is somewhat unusual,
but must be seen as technical tribute to AspectJ as the language in
which XPIs are currently implemented. In fact, the authors of
XPIs deliberately wanted AspectJ to remain as is, in order not to
subject their work to the lack of adoption that is usual for lan-
guage modifications [63]. However, this technicality impairs in-
dependent module evolution to a certain extent, since the imple-
mentation of the crosscutting interface is not part of the imple-
mentation of the module (cf. the discussion of Gudmundson and
Kiczales’s pointcut interfaces above, which suffer from the same
problem if the pointcut crosscuts more than a single class).
Griswold et al. note that the decoupling of aspects from their
bases through XPIs is comparable to that of a caller from the
called module through the provided interface (the API) of that
module. In fact, just as a module can remain (and usually is)
oblivious of its specific callers (a property called feature oblivi-
ousness in Sullivan et al. [63]), and although the module needs to
prepare for aspects (by providing an XPI), it may remain oblivi-
ous of which aspects exactly utilize this interface. However, while
the API of a module is usually designed to serve a specific goal

18 Another criticism of Open Modules expressed by Sullivan et al. is that

since the pointcut interface is tied to a single (hierarchical) module, the
interface is not crosscutting [63]. One could add that therefore, Open
Modules are not aspect oriented. Note that the same argumentation can
be applied to the pointcut interfaces suggested by Gudmundson and
Kiczales, if they are assigned to single classes.

494

(the purpose of the module), specification of the XPI requires an a
priori decision what the crosscutting behavior of a system is. To
address this, Sullivan et al. [63] state they designed their XPIs by
“ask[ing] the question, what constraints on the code would shape
it to make it relatively easy to write the aspects at hand, as well as
support future aspects?” This is exactly the loss of obliviousness
noted by Aldrich.

Restoration of Modular Reasoning
Clifton and Leavens note that AOP, although heavily citing Par-
nas’s article [55], is at conflict with it, basically because the
obliviousness property contradicts the independent comprehensi-
bility required of a module (a notion called modular reasoning)
[10, 11].19 Following the behavioral subtyping analogy they sug-
gest that the effect of aspect application should be checkable so as
to not alter the behavior of a module in unexpected ways. For this,
they suggest to divide aspects into so-called spectators (formerly
called observers [10]) and assistants, the former not changing (“in
some well-defined sense”) the behavior of the modules they ad-
vise, the latter only doing so to an extent made explicit in a suit-
able “module interconnection specification” to be found “in a
well-defined place relative to the client module” [11]. This would
retain some of the flexibility associated with the obliviousness
property of AOP, and at the same time allow modular reasoning.
Support for automated classification of aspects as spectators
comes from a whole-program analysis described by Zhao & Ri-
nard [57], which is also capable of pointing to specific problems
of assistants. However, it seems that the module interconnection
specification suffers from the same problems as the definition of
pointcut interfaces spanning several modules (discussed above).
Also—although only a marginal note—even spectators can be
harmful, if only by spying on local (private) data and passing it on
to some other, malevolent party. For a more detailed discussion,
see Dantas & Walker’s recent work on “Harmless advice” [14].

Aspect-Implied Interfaces
In another attempt to restore modular reasoning, Kiczales and
Mezini argue that “aspects cut new interfaces through the primary
module structure” [34]. De facto, this means that a module is no
longer sovereign over its own interfaces; rather, they are forced
upon it by system composition. One immediate consequence of
this is that modules cannot be changed independently of their as-
sembly, simply because it is unclear which interfaces to keep con-
stant. This of course leads independent development and with it
also the module concept ad absurdum.
A closer look at Kiczales and Mezini’s proposal reveals that they
suggest that a tool computes the aspect aware interfaces given a
complete system configuration (cf. Footnote 9). While this may
allow modular reasoning in the presence of aspects, it does so
only after the system has been composed, a stage at which mod-
ules and their interfaces have done their service and might as well
disappear. In fact, Parnas stressed explicitly that after assembly,
two differently modularized programs might conceivably be iden-
tical ([55], p.1055)—modularization is a design-time issue! Also,
using the same argumentation one could demand that program-

19 The authors also touch on the verification problem mentioned in Sec-

tion 6.3.3, namely that aspects can break the postconditions of a method
in a way that is outside the control of its programmer [10].

mers declare all members of all classes public, and only after sys-
tem composition derive which ones may be declared private.
Last but not least, making interfaces aspect aware by adding the
computed information which aspects apply to which members of
the provided interface of a class does not really add to the inter-
face, since no client of the class except the aspect from which it
has been computed will ever use this information (at least not in a
way that is enforced by the compiler). Instead, these aspect-aware
interfaces publish implementation details of the aspects, namely
which aspect is called where. This in turn means that with the
suggested aspect awareness of interfaces, non-locality20 is much
the same as in conventional, procedure-call based implementa-
tions, which also need to import the modules containing the called
procedures. So in a way, Kiczales and Mezini’s proposal seems to
support my observation that the problems of AOP cannot be fixed
without giving up its distinguishing characteristics.

Aspectual Collaborations
The Aspectual Collaborations of Ovlinger et al. [41, 52, 53] con-
tinue previous work on aspectual components, enabling recursive
composition of collaboration patterns as modules. So-called as-
pectual methods extend the usual binding between expected (or
required) and provided interfaces by allowing a form of method
call interception across modules in which the intercepting and the
intercepted method can remain oblivious of each other. Aspectual
Collaborations can be used to implement crosscutting concerns
such as caching; yet this requires an explicit composition (bind-
ing) of the (collaboration representing the) aspect and the (col-
laboration representing the) base. Therefore, Aspectual Collabora-
tions are more an exploitation of an aspect-oriented mechanism
(method call interception, which is also a standard mechanism of
metaprogramming) for the purpose of component-based pro-
gramming, than a general reconciliation of AOP with modularity.

Information Transparency
But there are other ways of addressing crosscutting. One such
way is explored by Griswold in his work on information trans-
parency [26], a complement to information hiding that allows the
ad hoc creation of localized descriptions of a design concern
based on similarity of the scattered code implementing it. Gris-
wold describes his approach as relying on naming conventions
and other characteristics of code (including the use of particular
variables, data structures, etc.) that can be evaluated by a tool, and
sometimes even architectural information. One could add that to-
day, source code annotations would lend themselves to explicitly
associating code with concerns [56].
Perhaps the greatest advantage of information transparency over
aspect-oriented approaches from a technical point of view is that
it does not depend on weaving, that is, on the automatic tangling
of code designed as separate units, but on its opposite, namely on
the automatic disentangling of code designed to go together. In
other words: rather than creating a system from different views of
it, it creates different views of a system. Whether and how these
views can be used to change and extend the system, however, re-
mains an open challenge.

20 Here, locality refers to the property that all program elements relating to

one concern are located in a single place, which is, according to Kicza-
les & Mezini [34], a necessary condition for modularity.

495

References
[1] Aldrich, J.: Open Modules: Reconciling extensibility and in-

formation hiding. In: Software Engineering Properties of
Languages for Aspect Technologies (SPLAT). Workshop at
AOSD (2004).

[2] Aldrich, J.: Open Modules: Modular reasoning about advice.
In: ECOOP (2005) 144–168.

[3] Allan, C. et al.: Adding trace matching with free variables to
AspectJ. In: OOPSLA (2005) 345–364.

[4] Avgustinov, P. et al.: Semantics of Static Pointcuts in As-
pectJ. Technical Report abc-2006-3 (Oxford University
Computing Laboratory, 2006).

[5] Bezdek, J.C.: Fuzzy models—what are they, and why. IEEE
Transactions on Fuzzy Systems 1:1 (1993) 1–6.

[6] Bodden, E.: Efficient and expressive runtime verification for
Java. In: Proceedings of the Grand finals of the ACM Student
Research Competition 2005, San Francisco (2005).

[7] Bodden, E., Forster, F., Steimann, F.: Avoiding infinite re-
cursion with stratified aspects. In: NODe 2006 – Objects,
Aspects, Services, the Web. GI Lecture Notes in Informatics
(2006) in press.

[8] Brooks, Jr., F.P.: The Mythical Man-Month: Essays on Soft-
ware Engineering, 20th Anniversary Edition (Addison-
Wesley 1995).

[9] Clark, L.R.: A linguistic contribution to goto-less program-
ming. Commun. ACM 27:4 (1984) 349–350.

[10] Clifton, C., Leavens, G.T.: Obliviousness, modular reason-
ing, and the behavioral subtyping analogy. In: SPLAT
(2003).

[11] Clifton, C., Leavens, G.T.: Observers and assistants: A pro-
posal for modular aspect-oriented reasoning. In: Workshop
on Foundations of Aspect-Oriented Languages (FOAL)
(2002).

[12] Colyer, A., Harrop, R., Johnson, R., Vasseur, A.: AOP will
see widespread adoption. IEEE Software 23:1 (2006) 72–74.

[13] Constantinides, C., Scotinides, T., Störzer, M.: AOP consid-
ered harmful. In: 1st European Interactive Workshop on As-
pect Systems (EIWAS) (2004).

[14] Dantas, D. S., Walker, D.: Harmless advice. In: POPL, SIG-
PLAN Not. 41:1 (2006) 383–396.

[15] Devanbu, P.T., Balzer, B., Batory, D.S., Kiczales, G.,
Launchbury, J., Parnas, D.L., Tarr, P.L.: Modularity in the
new millenium: A panel summary. In: ICSE (2003) 723–724.

[16] Dijkstra, E.W.: A Discipline of Programming. (Prentice Hall,
Englewood Cliffs, New Jersey 1976).

[17] Dijkstra, E.W.: On the role of scientific thought. In: Edsger
W. Dijkstra: Selected Writings on Computing: A Personal
Perspective. (Springer-Verlag 1982).

[18] Douence, R., Motelet, O., Südholt, M.: A formal definition
of crosscuts. In: Proc. of the 3rd Int. Conf. on Metalevel Ar-

chitectures and Separation of Crosscutting Concerns.
Springer LNCS 2192 (2001) 170–186.

[19] Elkan, C: The paradoxical success of fuzzy logic. IEEE Ex-
pert 9:4 (1994) 3–8. First appeared at the 1993 National
Conference on Artificial Intelligence (AAAI'93).

[20] Elrad, T., Filman, R.E., Bader, A.: Aspect-oriented pro-
gramming: Introduction. Commun. ACM 44:10 (2001) 29–
32.

[21] Ernst, E.: Separation of concerns and then what? In: Position
papers from the workshop on Aspects and Dimensions of
Concern at ECOOP'00 (2000).

[22] Filman, R.E., Elrad, T., Clarke, S., Aksit, M.: Aspect-
Oriented Software Development. (Addison-Wesley Profes-
sional, 2004).

[23] Filman, R.E., Friedman, D.P.: Aspect-oriented programming
is quantification and obliviousness. In: Workshop on Ad-
vanced Separation of Concerns at OOPSLA (2000). Revised
reprint appeared in [22].

[24] Filman, R.E.: What is AOP, revisited. In: Workshop on
Multi-Dimensional Separation of Concerns at ECOOP
(2001).

[25] Forster, F., Steimann, F.: AOP and the antinomy of the liar.
In: Workshop on the Foundations of Aspect-Oriented Lan-
guages (FOAL) at AOSD (2006) 47–56.

[26] Griswold, W.G.: Coping with crosscutting software changes
using information transparency. In: Proceedings of the 3rd
International Conference on Metalevel Architectures and
Separation of Crosscutting Concerns. Springer LNCS 2192
(2001) 250–265.

[27] Griswold, W.G., Shonle, M., Sullivan, K., Song, Tewari, N.,
Cai, Y., Rajan, H.: Modular software design with crosscut-
ting interfaces. IEEE Software 23:1 (2006) 51–60.

[28] Gudmundson, S., Kiczales, G.: Addressing practical software
development issues in AspectJ with a pointcut interface. In:
Advanced Separation of Concerns, Workshop at ECOOP
(2001).

[29] Gybels, K., Brichau, J.: Arranging language features for
more robust pattern-based crosscuts. In: AOSD (2003) 60–
69.

[30] Harrison, W.H., Ossher, H.: Subject-Oriented Programming
(A critique of pure objects). In: OOPSLA (1993) 411–428.

[31] Hilsdale, E., Hugunin, J.: Advice weaving in AspectJ. In:
AOSD (2004) 26–35.

[32] Hogg, J., Lea, D., Wills, A., de Champeaux, D., Holt, R. C.:
The Geneva convention on the treatment of object aliasing.
OOPS Messenger 3:2 (1992) 11–16.

[33] Kiczales, G., Lamping, J., Lopes, C.V., Maeda, C., Mend-
hekar, A., Murphy, G.C.: Open implementation design
guidelines. In: ICSE (1997) 481–490.

[34] Kiczales, G., Mezini, M.: Aspect-oriented programming and
modular reasoning. In: ICSE (2005) 49–58.

496

[35] Kiczales, G., Mezini, M.: Separation of concerns with proce-
dures, annotations, advice and pointcuts. In: ECOOP (2005)
195–213.

[36] Klaeren, H., Pulvermueller, E., Rashid, A., Speck, A.: As-
pect composition applying the design by contract principle.
In: Proceedings of the GCSE 2000, Second International
Symposium on Generative and Component-Based Software
Engineering (2000) 57–69.

[37] Klose, K., Ostermann, K.: Back to the future: pointcuts as
predicates over traces. In: Workshop on Foundations of As-
pect-Oriented Languages (FOAL) at AOSD (2005).

[38] Kojarski, S., Lorenz, D.H.: Modeling aspect mechanisms: a
top-down approach. In: ICSE (2006) 212–221.

[39] Laddad, R.: AOP and metadata: A perfect match. In:
AOP@work (http://www-128.ibm.com/developerworks/java,
2005).

[40] Lesiecki, N.: Improve modularity with aspect-oriented pro-
gramming (http://www-
128.ibm.com/developerworks/java/library/j-aspectj/, 2002).

[41] Lieberherr, K.J., Lorenz, D.H., Ovlinger, J.: Aspectual col-
laborations: combining modules and aspects. The Computer
Journal 46:5 (2003) 542–565.

[42] Lopes, C.V., Dourish, P., Lorenz, D.H., Lieberherr, K.: Be-
yond AOP: toward naturalistic programming. In: OOP-
SLA'03 Special Track on Onward! Seeking New Paradigms
& New Thinking. ACM (2003) 198–207.

[43] Lorenz, D.H., Skotiniotis, T.: Extending design by contract
for aspect-oriented programming.
http://arxiv.org/abs/cs.SE/0501070.

[44] Masuhara, H., Kiczales, G.: Modeling crosscutting in aspect-
oriented mechanisms. In: ECOOP (2003) 2–28.

[45] Mehner, K., Rashid, A.: Towards a generic model for AOP
(GEMA). Technical Report CSEG/1/03, Computing Depart-
ment, Lancaster University, UK (2003).

[46] Mikhajlov, L., Sekerinski, E.: A Study of the fragile base
class problem. In: ECOOP (1998) 355–382.

[47] Murphy, G., Schwanninger, C.: Aspect-oriented program-
ming. IEEE Software 23:1 (2006) 20–23.

[48] Nagy, I., Bergmans, L.: Towards semantic composition in
aspect-oriented programming. In: 1st European Interactive
Workshop on Aspects in Software (EIWAS). (Berlin, Ger-
many 2004).

[49] Nordberg, III., M. E.: Aspect-oriented dependency inversion.
In: Workshop on Advanced Separation of Concerns in Ob-
ject-Oriented Systems at OOPSLA (2001).

[50] Ossher, H., Tarr, P.: Hyper/J: Multi-dimensional separation
of concerns for Java. In: ICSE (2001) 729–730.

[51] Ostermann, K., Mezini, M., Bockisch, C.: Expressive point-
cuts for increased modularity. In: ECOOP (2005) 214–240.

[52] Ovlinger, J.: Modular programming with aspectual collabo-
rations. In:OOPSLA 2002 Doctoral Symposium (2002) 16–
17.

[53] Ovlinger, J.: Combining Aspects and Modules. PhD Thesis
(College of Computer and Information Science, Northeastern
University, Boston, USA 2004).

[54] Parnas, D.L.: Information distribution aspects of design
methodology. In: Information Processing 71, Proceedings of
the IFIP Congress 1 (North-Holland, 1972) 339–344.

[55] Parnas, D.L.: On the criteria to be used in decomposing sys-
tems into modules. Commun. ACM 15:12 (1972) 1053–1058.

[56] Revelle, M., Broadbent, T., Coppit, D.: Understanding con-
cerns in software: insights gained from two case studies. In:
IWPC (2005) 23–32.

[57] Rinard, M., Salcianu, A., Bugrara, S.: A classification sys-
tem and analysis for aspect-oriented programs. In: Proceed-
ings of the 12th ACM SIGSOFT International Symposium on
Foundations of Software Engineering (2004) 147–158.

[58] Steele, Jr., G.L., Gabriel, R.P.: The Evolution of Lisp.
http://dreamsongs.com/NewFiles/HOPL2-Uncut.pdf

[59] Steimann, F.: Why most domain models are aspect free. In:
5th Aspect-Oriented Modeling Workshop AOM at UML
(2004); revised version appeared as Ref. [60].

[60] Steimann, F.: Domain models are aspect free. In: MoDELS
2005, 8th International Conference on Model Driven Engi-
neering Languages and Systems (2005) 171–185.

[61] Störzer, M., Graf, J.: Using pointcut delta analysis to support
evolution of aspect-oriented software. In: 21st IEEE Interna-
tional Conference on Software Maintenance (2005) 653–
656.

[62] Stolz, V., Bodden, E.: Temporal assertions using AspectJ. In:
RV'05 — 5th Workshop on Runtime Verification (Edinburgh,
Scotland, UK, 2005).

[63] Sullivan, K.J., et al.: Information hiding interfaces for as-
pect-oriented design. In: Proc. 10th European Software Eng.
Conf. Held Jointly with 13th ACM SIGSOFT Int’l Symp.
Foundations of Software Eng. (ESEC/FSE 2005) (ACM
Press, 2005) 166–175.

[64] Tourwé, T., Brichau, J., Gybels, K.: On the existence of the
AOSD-evolution paradox. In: Workshop on Software-
Engineering Properties of Languages for Aspect Technolo-
gies (SPLAT). Workshop at AOSD (2003).

[65] Walker, R.J., Viggers, K.: Implementing protocols via de-
clarative event patterns. In: SIGSOFT FSE (2004) 159–169.

[66] Wulf, W., Shaw, M.: Global variable considered harmful.
SIGPLAN Notices 8:2 (1973) 28–34.

[67] Zhao, J., Rinard, M.C.: Pipa: A behavioral interface specifi-
cation language for AspectJ. In: Fundamental Approaches to
Software Engineering, 6th International Conference (2003)
150–165.

497

