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Abstract 
Aspect-oriented programming is considered a promising new 
technology. As object-oriented programming did before, it is be-
ginning to pervade all areas of software engineering. With its 
growing popularity, practitioners and academics alike are wonder-
ing whether they should start looking into it, or otherwise risk 
having missed an important development. The author of this essay 
finds that much of aspect-oriented programming’s success seems 
to be based on the conception that it improves both modularity 
and the structure of code, while in fact, it works against the pri-
mary purposes of the two, namely independent development and 
understandability of programs. Not seeing any way of fixing this 
situation, he thinks the success of aspect-oriented programming to 
be paradoxical. 

Categories and Subject Descriptors    D.2.2 [Software Engineer-
ing]: Design Tools and Techniques  – Modules and interfaces; 
Structured programming. D.3.2 [Programming Languages]: 
Language Classifications – Multiparadigm languages. D.3.3 
[Programming Languages]: Language Constructs and Features – 
Modules, packages; Control structures; Procedures, functions, 
and subroutines. 

General Terms   Languages. 

Keywords   aspect-oriented programming; modularization; pro-
gram structure; globalization of variables; independent develop-
ment; readability; software engineering. 

1. Introduction 
I first encountered aspect-oriented programming (AOP) while 
writing my habilitation thesis, via the “detour” of subject-oriented 
programming (SOP) [30]. At that time, I was mostly interested in 
roles as first class modeling and programming concepts, and al-
though I could see the practical problems SOP and AOP were ad-
dressing, I decided that their relationship to roles––at least the 
way I viewed them––was weak. 
After finishing my habilitation, I was asked to take over the Soft-
ware Engineering lectures. For Software Engineering II, I decided 
to include a short excursion into AOP, partly because I wanted to 
find out for myself what it was good for (if not for representing 
roles), partly because I wanted to communicate to my students 
that object-orientation and Java were not the last words in pro-

gramming. AspectJ was particularly attractive for my purposes 
because it came with a compiler and a plugin for the Java IDE I 
was using. After fiddling with the versions I managed to get it in-
stalled and my first sample program running. What proved more 
difficult, though, was to find a conceptual motivation of AOP that 
convinced me (one comparable to how classes, associations, and 
roles can be motivated in OOP); unsuccessful as I was, I decided 
to stick with the material used for the AspectJ demo at OOPSLA 
2002, which was available on the web. My students immediately 
bought it. 
What impressed me most at that time was the fact that the devel-
opers of AspectJ had undergone the suffering of developing an 
IDE plugin that not only allowed compilation without pre-
processing, but also provided tool support allowing me to deal 
with the features of the language rather than the technical obsta-
cles to using it. In fact, all other language extensions proposed by 
academics I had looked into until that time either remained at the 
theoretical level entirely (with very impressive, page long sound-
ness proofs convincing me that there are smarter guys out there 
than me, but not giving me any feeling of the practical impact of 
the formalism), or came with command level precompilers requir-
ing me to undertake installation procedures so intimidating that I 
was sure I would never get it running. The AspectJ people on the 
other hand knew what it takes for a new language to be adopted 
by programmers: a set of simple concepts attacking a real prob-
lem, and good tool support. In this light, AspectJ was surely one 
piece of commendable work. 
A little later, I attended a biannual national (German) meeting on 
teaching software engineering at universities. Someone had raised 
the question, what minimum half life does a new approach need to 
deserve to be taught? One highly respected participant said that 
we as lecturers should be able to judge the impact of, say, AOP 
right away so that there would be no need to wait for first signs of 
decay in order to be able to estimate the half life. I wondered why 
he used AOP as an example, and asked him for his judgment in 
this particular case. He responded by saying he was confident that 
AOP would have sufficient impact to grant teaching it. This made 
me wonder what made him so sure. 
What disturbed me most about AOP at that time was the monot-
ony of examples. In particular, to me the ever-recurrent logging, 
tracing, debugging, etc. aspects are all more or less “programming 
problems” in that they address concerns that a programmer has to 
deal with because he is programming, not because some particular 
problem domain or application demands it. This is in contrast to 
application classes such as Person, Document, etc., and also 
methods such as attend, format, and so on, which all represent 
problem domain level concepts. I conjectured that most, if not all 
of the programming problems addressed by AOP could either be 
tackled by adding a corresponding feature to an IDE (for example, 
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tracing as done in Eclipse), or by extending the language with 
suitable constructs (for example, exception handling as in Java, or 
transaction management as in database languages). I expressed 
this in my provocative claim that “the number of useful aspects is 
not only finite, but also fairly small.” Although obviously impos-
sible to prove, I thought I could make it plausible by showing that 
aspects are not domain level abstractions and thus lack a signifi-
cant source of diversity. 
Because my claim was both provocative and unproven, I decided 
to test it against a pro-aspect audience and submitted it as a posi-
tion paper to a small European workshop on aspect systems. Not 
surprisingly, most of the AOP proponents at the workshop would 
not follow my thoughts, and the discussion led, if I remember cor-
rectly, nowhere. However, it was there that I learned that to some 
in the community, AOP is all about modularity. To me, this came 
as a surprise, mainly because I missed interfaces in the AOP tool-
set, a construct which I had always thought (and taught) to be in-
separable from that of modules. The good thing I took home from 
this workshop was that I decided to get myself a copy of a work-
shop paper by Filman and Friedman, titled “Aspect-oriented pro-
gramming is quantification and obliviousness” [23]. 
When I first read this paper, I thought: “Wow, this is it!” It was 
the first paper I had come across that—without putting forward a 
particular language—seemed to be more concerned about what 
AOP is rather than what it is good for. Hence, it seemed one big 
step toward the conceptual justification of the approach and its 
constructs that I had been looking for. At the same time, it pre-
sented AOP as a next step in the history of the development of 
programming languages, and gave criteria for classifying whether 
a language is aspect-oriented. The third thing that struck me, how-
ever, was that the paper’s characterization of aspect orientation 
almost completely covered one I had—believe it or not—
independently devised for the purpose of making plausible “Why 
most domain models are aspect free” [59], my (vain) attempt to 
put an end to the (vain, in my eyes) attempts of aspectizing do-
main modeling and its graphical modeling languages. However, 
although I had based my argumentation mainly on the quantifica-
tion property and the resulting second-orderedness of aspect-
orientation, I quickly learned that not all in the community liked 
the article by Filman and Friedman as much as I did, apparently 
mostly because the notion of obliviousness was too much an invi-
tation to question the modularity property thought to be crucial to 
AOP.  
My most recent noteworthy encounter with AOP has been at a 
conference where someone explained to the audience how he had 
used AspectJ to factor out the various passes of a compiler from 
the node classes of the abstract syntax tree. As far as I could see, 
this inevitably meant that as aspects, the passes needing access to 
the data stored in the nodes had to break the nodes’ modularity. 
When I remarked that he had just given us a perfect example of 
why AOP is fundamentally at odds with modularization, that in 
fact I believed that AOP should not be spoken of in connection 
with modularity in any other than a negative sense, someone from 
the audience responded that I was right, but only if I talked about 
“Parnas style modularization.” Given that modularization is a 
fairly broadly accepted notion, I thought that this was a pretty odd 
thing to say. 
To me programming is the process of creating a software artifact 
that, by repeated extension, adaptation, and correction, approxi-

mates an ideal solution to a given problem. The more complex the 
problem and its solution are, the more programming depends on 
recursive (de)composition, that is, on the possibility to repeatedly 
divide a problem into smaller parts whose solutions can either be 
taken off the shelf or be programmed independently. However, 
such an approach poses stern requirements on compositionality; in 
particular, it demands that the functionality of the whole is pre-
dictable from the functionality of its parts and how they are com-
posed; because otherwise one has to understand the complete sys-
tem in order to know what it does, making assembly from parts no 
easier than creating the software in one piece. To reach this level 
of compositionality, each part must come with a sufficiently accu-
rate specification of what it does, and what it requires for doing it. 
While there may in fact be different styles of decomposition, the 
resulting specifications always involve modules and interfaces. 
Surely, keeping to interfaces means restricting the programmer’s 
freedom, and programming without bounds (interfaces) is cer-
tainly more fun; yet I believe that for big systems, restriction is 
the key to success. 
With hindsight, I personally have undergone a development that 
may not be so untypical for many like me. I started out trying to 
ignore AOP, but it came back to me with sufficient thrust to make 
me curious. By looking into it, I found its applicability to be fairly 
limited, but when I looked up again, I realized that it had begun to 
penetrate all areas of software engineering, at least in academic 
circles. Wondering what the key to its apparent success was, I 
tried to learn more about it, but the more I knew, the less I could 
see how AOP was going to live up to its claims. While this may 
not be the end of my personal development, I decided that I had 
collected enough material to share my thoughts with others. After 
all, AOP is not some shrinking violet that I could wipe out with a 
few well-chosen words. Quite the contrary. 

2. Pinning Down a Moving Target 
When I originally set out to write this tract, I tried to present a 
characterization of AOP that was 
1. general enough to cover sufficiently many approaches hud-

dling under the aspect-oriented umbrella, while at the same 
time was  

2. specific enough to be able to base some conclusive argumenta-
tion on it.  

I thought this was wise because although each aspect-oriented 
programming language (AOPL) comes with its own, formal and 
unambiguous definition of what AOP is, there seems to be no one 
such definition, not even on an abstract level, that  
a) is common to all AOPLs and  
b) sufficiently distinguishes it from other, long established pro-

gramming concepts. 
One problem with having no single, accepted definition is that it 
makes AOP a moving target for its opponents: whenever some 
problem is identified, answers of the kind “Ah well, this is a prob-
lem of <insert some AOPL here>, but if you look at, for instance, 
<insert another AOPL here>, then you don’t have this problem!” 
can easily be generated. I tried to shield the points I was going to 
make from frustrating discussions of this kind, by basing my ar-
gumentation on as few defining characteristics of AOP as possi-
ble. I was hoping that my readers would agree that there must be 
some such characteristics, or else the subject of the discussion 
would dissolve away, at least from an engineering standpoint. Un-
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fortunately, I did not get further than generating comments of the 
kind “While this may be a valid characterization of <insert some 
AOPL here> and like languages, it is certainly not one of <insert 
some other AOPL here>.” With hindsight, this is what I should 
have expected; others much more involved in the subject than I 
am have come to the conclusion that capturing AOP is a very dif-
ficult undertaking (cf., for example, Mehner & Rashid [45] and 
also the discussions at http://aosd.net/). 
Despite the lack of a common agreement of what AOP is, there is 
a common understanding of what AOP is good for, namely for 

modularizing crosscutting concerns. 
However, this understanding reflects the purpose, not the nature 
of AOP. What disturbs me most about this is that it forbids me 
from deriving myself what AOP is good for, since this is antici-
pated in its definition. In particular, with “modularizing crosscut-
ting concerns” as the definition of AOP, finding that whatever is 
considered to be AOP modularizes crosscutting concerns is just 
begging the question,1 and finding that it does not implies (via 
modus tollens) that whatever I have looked at and found to not 
modularize cannot have been AOP—basta! Also, if modularizing 
crosscutting concerns is a widespread problem whose solution be-
stows success on the approach, AOP must be a success, simply 
because it is by definition solving the problem. If it is successful 
without solving the problem, it can still be so for other reasons, 
but these cannot be explained by its definition; in fact, it leaves 
what is successful undefined. 
I don’t find this very satisfactory. Instead, as formulated by Fil-
man and Friedman: 

Understanding something involves both understanding how 
it works (mechanism) and what it’s good for (methodology). 
In computer science, we’re rarely shy about grandiose 
methodological claims (see, for example, the literature of 
AI or the Internet). But mechanism is important––
appreciating mechanisms leads to improved mechanisms, 
recognition of commonalities and isomorphisms, and plain 
old clarity about what’s actually happening. (from [22], 
Chapter 2, a revised version of [23]) 

Because “recognition of commonalities and isomorphisms, and 
plain old clarity about what’s actually happening” are precisely 
what I am interested in, I will need an understanding of the 
mechanisms of AOP. For this purpose I will resort to a rather 
simplistic capture of how AOP works, willing to accept that it 
does not cover all of AOP—in particular, that it ignores ap-
proaches such as SOP that, previous to joining the AOP family, 
led an independent life. 

3. The Aspect Formula 
Perhaps the best known definition of what AOP is (its nature) is 
the simple equation 

aspect orientation = quantification + obliviousness (1)
put forward in a workshop paper by Filman and Friedman [23] 
and only recently repeated in a book on aspect-oriented software 
development edited by Filman and others [22]. Obliviousness ba-
sically implies that a program has no knowledge of which aspects 
                                                                 
1 an instance of the logical fallacy of that name, also known as petitio 

principii 

modify it where or when, and quantification expresses the fact 
that an aspect can affect arbitrarily many different points in a pro-
gram. One might be tempted to add “precisely which being speci-
fied by the aspect” to the last sentence, but this would make 
obliviousness a consequence of quantification, which would not 
allow one to be discussed independently from the other. In fact, 
while obliviousness has been the subject of some criticism, and in 
response to this has been questioned as a defining characteristic of 
AOP by its community (see, for example, Murphy and Schwan-
ninger [47]), quantification seems to have been challenged less. 
Thus, the sentence,  

In programs P, whenever condition C arises, 
perform action A. 

(2)

which is also from Filman and Friedman [22, 23] and captures 
much of the essence of Definition (1) without mentioning oblivi-
ousness explicitly2, seems much more generally agreed upon. In 
fact, Characterization (2) specifies in a concise way the effect an 
aspect—defined as a pair (C, A)—has on a program P.3 
As mentioned in the introduction, I had proposed a slightly more 
explicit formulation of Definition (2) independently in an earlier 
paper of mine [59]; in particular, that formulation captured a no-
tion of context in which condition C arises, and in which action A 
is performed. This context is of particular importance when 
speaking about modularity (and thus the purpose of AOP), since 
whenever action A is not completely independent of the context in 
which C arises, A will require access to this context, possibly 
breaking the modularity of the program P. I will therefore assume 
in the rest of this essay that both C and A are parameterized by a 
set of context variables that are bound to actual program elements 
whenever C is satisfied (the existence of the context elements 
may in fact be part of the condition). 
Note that it is somewhat typical for AOP—although perhaps not a 
necessary condition—that the context provided to an action A is 
expressed by the aspect (C, A), but not by the program elements 
that provide it. By contrast, a subroutine call explicitly specifies 
the context (parameters) passed to the subroutine at the call site 
(unless the subroutine has automatic access to this context, for in-
stance through global variables). Generally, this means that the 
program elements satisfying a condition C are oblivious to which 
elements of their context an aspect relies on (they could assume 
all, though). 

                                                                 
2 In fact, Definition (2) is presented in Filman and Friedman [23] as cap-

turing the quantification part of aspect orientation. From Definition (2) 
alone, it remains unclear whether P (or its elements) have knowledge of 
C. Filman later added that “the oblivious claim is that real aspect lan-
guages do not require P to mention A” [24]. 

3 One might argue that this capture of AOP is incomplete in that it leaves 
out the structural (as opposed to behavioral) changes made possible by 
certain AOPLs (for instance the inter-type declarations of AspectJ). But 
the same is also true for other popular definitions of AOP that are of the 
kind “when X happens, do Y” (Coyler et al. [12]). Besides, and decisive 
for this paper, the possibility to introduce structural changes does not al-
leviate any of the problems I am concerned about: the same line of ar-
gumentation can be applied to a definition of AOP that includes struc-
tural introductions. 
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3.1 Interpretations of the Aspect Formula 
Admittedly, the characterization of AOP as captured by Defini-
tions (1) and (2) seems to be influenced by the language definition 
of AspectJ. In fact, the definition of aspects as a pair (C, A) and 
their effect on programs covered by Definition (2) translates to 
the terms of AspectJ as follows: 
• P is the execution of a program, which includes the execution 

of advice (see below); 
• C is a set of so-called pointcuts specifying the target elements 

of the aspect in the program and the context in which they oc-
cur (mostly variables, but also stack content); 

• A is a piece of advice that depends on the context captured by 
C; and 

• the quantification is implicit in AspectJ’s compiler/weaver. 
Despite the influence of AspectJ, the generality of the above sim-
ple capture of AOP should not be underestimated: 
1. First and foremost, it allows full flexibility for different 

AOPLs concerning when C is to be evaluated and, conse-
quently, which elements of the program it has access to. So-
called static AOPLs evaluate C at compile (or class loading) 
time, whereas dynamic AOPLs evaluate it at runtime. In the 
static case, evaluation of C has only access to the elements of 
the program text. In the dynamic case, C can range over execu-
tion elements as well as over temporal patterns of these. 

2. Second, there are no theoretical bounds to what the condition 
C has access to, in particular, what the context may include: 
declared and actual types of all kinds of variables (not only pa-
rameters), their values (objects), the receiver of a method call, 
the caller, the current state of the program, past states, the call 
stack, an event, a sequence of events—C could even be a 
predicate over traces [3, 37, 65]. In brief: in Definition (2), 
condition C can have access to whatever is allowed by the 
AOPL and can be made available by the underlying runtime 
system. 

3. Depending on viewpoint, action A is expanded to a sequence 
of program elements (static view) or to a set of join points (dy-
namic view). In either case, the condition C of an(other) aspect 
can range over the elements of A. In other words: actions A can 
be elements of programs P, and aspects can be the targets of 
aspects. Therefore, Definition (2) is not as asymmetric as it 
may seem. Instead, one should be aware that “target”—in the 
literature usually referred to as “base program”—and “advice” 
are relative terms, or roles of advising: what is the target in one 
aspect application can be the advice in another. This is some-
what analogous to the (not unrelated) distinction between ob-
ject language and metalanguage, which comes with corre-
sponding roles [7, 25]. 

4. In practice, the point nature of join points limits the variability 
regarding how the execution of an action (advice) A can be 
combined with that of the program elements (join points) trig-
gering it: before, after, “around” (that is, one part before, one 
part after), and instead4 seem to be the only options. This is of 
course different if the model also allows multi-point patterns 

                                                                 
4 Note that allowing an aspect to block execution of its advised join point 

is somewhat contradictory to the interpretation of AOP as event-driven 
programming [18], in that an event that led to the execution of an aspect 
actually does not take place. 

[3, 37, 65] as join points. Since Definition (2) does not place 
any constraints on the nature of the elements of P other than 
that they can be selected by suitable conditions C, this model 
of AOP covers multi-point patterns as well. 

In fact, with a little flexibility Definition (2) of how AOP works 
can even be stretched to be in accord with more recent characteri-
zations of AOP, such as those proposed by Masuhara & Kiczales 
[44] or Kojarski & Lorenz [38]. In particular, conditions C can be 
interpreted as composition rules governing the composition of dif-
ferent action sets A (representing different concerns) into a com-
posed program P. This would allow Definition (2) to cover other, 
so-called symmetric approaches to AOP such as Hyper/J [50], as 
well as the inter-type declarations of AspectJ (cf. Footnote 3). In 
the context of this essay, however, it is important to note that 
these newer characterizations of AOP do not assign it properties 
voiding the discussions that follow. In particular, in all but the 
most trivial cases the composition rules C (labeled R in [38]) will 
likely need some intimacy with the structure (including context) 
of the actions A (labeled C in [38]) to be composed. 

3.2 But OOP…! 
Some proponents of AOP say that trying to nail down AOP to its 
mechanisms is premature, or even unfair, simply because an 
analogous capture of OOP has long been—or is still—missing, 
and that this fact hasn’t compromised OOP or its community. 
However, I don’t agree with this argumentation. 
Concerning the lack of definedness, I never thought that this was 
a problem for OOP. In fact, the first definition of OOP that I 
heard is still the one I use today: 

object-orientation = abstract data types + inheritance (3)
Surely, this characterization depends on a common understanding 
of what abstract data types and inheritance are, but other than 
that, I think it’s perfectly OK. In particular, it serves as a broadly 
usable criterion for deciding whether some language is object-
oriented or not: all that needs to be done is to check whether it 
supports abstract data types and comes with some kind of inheri-
tance. At the same time, this definition is sufficient—respective 
definitions of abstract data types and inheritance provided—to in-
fer some properties of OOP. For instance, its modularity property 
can be inferred from that of abstract data types, and it can be 
shown that OOP has a problem with modularity if inheritance 
breaks the encapsulation provided by abstract data types. This 
susceptibility to rigorous reasoning is in sharp contrast to the 
“grandiose methodological claims” that OOP isn’t at all devoid 
of: that object-orientation better captures the real world, that it al-
lows seamless integration of analysis, design, and implementa-
tion, that it leads to productivity gains, etc. None of these claims 
serves the “plain old clarity about what’s actually happening”. 
But Definition (3) does. 

4. Playing with the Options 
That Characterization (2) is indeed a very general capture of AOP 
can be seen by running through a number of possible formulations 
of condition C. At one extreme, C could stand for the condition 
that a certain aspect with associated action (advice) A is refer-
enced in the program text. Definition (2) then expresses no more 
than the semantics of a standard procedure call: 

In programs P, whenever an aspect is referenced, 
perform its associated action A. 

(4)
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This is an interesting construction, since it shows that quantifica-
tion can indeed be completely independent from obliviousness: all 
places where condition C can possibly arise are explicitly marked 
in the program text (cf. Footnote 2). Of course the programmer of 
P needs to know which aspects there are, how they are named, 
and where or when they should apply; and almost certainly, no 
one would accept this style as AOP, since it can be replaced by 
ordinary procedural programming; nevertheless, it goes to show 
that Definition (2) of how AOP works is quite stretchable. 
At the other extreme, C can express some condition that does not 
allow a programmer of P to associate elements of P with aspects: 
for instance, C could express a random selection, invoking A by 
chance (including always or never). This would be expressed by 

In programs P, whenever Random indicates it, 
perform action A. 

(5)

Then, aspect awareness of a program is reduced to the level that 
all places in a program may be regarded as implicitly marked, but 
performance of A remains uncertain (the “non-certainty of appli-
cation” noted in a different context in “AOP considered harmful” 
[13]). This is largely the situation in which the programmer of P 
has no knowledge of the presence of aspects or which they are, 
but knows that AOP exists and that P may be subject to it; and 
also to a certain extent the situation in which the programmers of 
aspects (C, A) have no detailed knowledge of the programs the 
aspects are to apply to. 
Surely, these formulations of C are theoretical extremes that no 
practical AOPL will adopt. The question that I find interesting, 
though, is whether the conditions C can be cast in such a form 
that AOP serves its methodological claims, in particular the 
modularization of crosscutting concerns, while at the same time 
makes its mechanisms sufficiently innovative to justify its recep-
tion as a new form of programming. I will therefore further ex-
plore the possibilities of tweaking Definition (2). 

4.1 Taming Obliviousness 
Returning to the first extreme, it is obvious that directly calling 
aspects from a program is not AOP, simply because it is indistin-
guishable from procedural programming. However, the program P 
need not make explicit reference to the aspects themselves—
instead, it could also reference some third elements B exterior 
(that is, not directly contributing) to P that are not parts of the as-
pects, but nevertheless indicate that some aspects may evaluate 
these elements in their conditions C, possibly invoking the at-
tached actions A. This would be expressed by the formula 

In programs P, whenever condition C arises 
where element B is referenced, 

perform action A. 

(6)

In order to hook an aspect (C, A) to B, B will usually be integrated 
into the aspect’s condition C so that Definition (6) collapses to 
Definition (2) with the additional constraint that C must check for 
the presence of B. As regards the additional program elements B, 
annotations can be employed5 (which are in a way outside the 
program they annotate); however, if these annotations do not al-
low the inclusion of runtime values, they cannot capture the con-

                                                                 
5 called “abstract annotations” by Laddad [39], because they indicate the 

nature of the annotated rather than possible aspects that depend on it; 
also referred to as “annotation-properties” by Kiczales and Mezini [35] 

text of B which A may need access to6. Note that B need not nec-
essarily occur exactly where A is to be invoked––it can also be at-
tached to a program scope in which C should be checked. For in-
stance, B could be an interface of a module to whose internals 
(execution of program elements inside the module) aspect (C, A) 
is to be applied. 
Using additional program elements B to tag the places where as-
pects may apply gives the programmers of P the possibility to 
deny aspects access where it is not wanted, simply by not refer-
encing B (or any other annotation that could be evaluated by as-
pects) in these places. To express where they could apply, how-
ever, the programmer must have some sense of what possible as-
pects might want to do, so as to be able to tag the corresponding 
points in a program and also to be able to expose their context 
through B, if that is linguistically possible. In fact, referencing B 
in a program is more or less equivalent to inserting (or announc-
ing, in case B does not mark the exact position) a dynamically 
bound procedure call, the main difference being that there is an 
additional condition C guarding this call that is not expressed at 
the call site. Also, if B does not capture the context that A may 
have access to, A must take access to the context it depends on for 
granted. 
Referencing some other element B in the program, while keeping 
the information about which aspects are hooked to B the secret of 
the aspects, adjusts obliviousness to a level at which the pro-
grammer knows that aspects may interact with the points in P 
tagged with B (and will not interact with all other points); yet he 
does not know which aspects. As with the dynamic binding of 
methods in OOP, the surprise induced by this ignorance can be 
reduced by specifying contracts that have to be fulfilled by each 
aspect advising points matched by B, as has been suggested by, 
for example, Clifton, Griswold, Sullivan, and their co-workers 
[10, 27, 63] (note that [27] and [63] also impose contracts on the 
targets; see the appendix). 
But no matter how attractive annotating the targets of aspects as 
suggested by Definition (6) may appear, AOP has a problem with 
it: for massively crosscutting concerns, annotating every program 
element that can be the target of corresponding aspects leads to 
widely scattered annotations that are just as annoying as the scat-
tering of code the aspect is to modularize. For instance, with trac-
ing as a crosscutting concern, annotating every program element 
whose execution is to be traced is just as annoying as adding the 
tracing code (usually no more than the calling of a subroutine) on 
site. To avoid this, it has been suggested to use so-called annota-
tor aspects that annotate program elements so that they can be ad-
vised by other aspects [39], as expressed by 

In programs P, wherever condition C arises, 
add annotation B. 

(7)

Obviously, the annotator aspects could be used to add the advice 
directly, but this would mean returning to Definition (2), that is, 
AOP without annotations. Considering that the proposed use of 
abstract annotations is to “[translate] some of the best practices 
from the object-oriented world to AOP” [39], and that this transla-
tion requires other aspects to restore the characteristic of AOP, the 

                                                                 
6 This is the case, for instance, in Java. 
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suggested tango of aspects and annotations7 looks more like an 
egg dance to me, the eggs being obliviousness, quantification, and 
explicit procedure calls.8 

4.2 Taming Quantification 
Returning to the other extreme, thinking of the conditions C as 
random may seem absurd. However, for the programmer of P 
who is unaware of the active aspects, which of his statements get 
advised may indeed appear random;9 for the programmers of the 
aspects, if the aspects use generic, intensional expressions for C, 
exactly which program elements of an (evolving) program an as-
pect advises is also subject to some coincidence. A first step to-
ward reducing this apparent randomness is to resort to an exten-
sional specification of C, that is, to explicitly listing all program 
elements to be advised. This is expressed by 

In programs P, whenever execution reaches one of the 
points in {p1 , …, pn}, 

perform action A. 

(8)

While this maintains P’s obliviousness to aspect application (the 
implicit invocation of A), it requires aspects to repeat explicitly 
those parts of a program that they are to advise. As with annotat-
ing targets of aspect application, for massively crosscutting con-
cerns this also quickly becomes a nuisance, the biggest difference 
being that the previously scattered references are now all col-
lected in one location. While such a programming technique 
(which reminds me of manually maintaining the tables a linker 
uses for putting together separately compiled parts of a program) 
may be useful for updating (or patching) existing and already de-
ployed programs, it is most certainly not what the AOP commu-
nity envisions. 
Generally, the quantification property makes AOP suffer from the 
problem that the conditions C in Definition (2) and its variations 
are extremely sensitive to changes in the program P, a condition 
that has become known under the label fragile pointcut problem 
[61] (also called arranged pattern problem in [29]). Some re-
searchers expect that this problem can be addressed by devising 
better languages for expressing C (“semantic” pointcut or crosscut 
languages [29, 42, 48, 51]; cf. also [4] for the semantics of point-
cuts). However, no matter how “semantic” a selector predicate C 
may be: in order to be able to formulate its action in terms of a 
programming language, an aspect must make reference to the con-
                                                                 
7 phrased after a talk titled “Metadata and aspect-oriented programming: 

It takes two to tango” presented at Java One in 2004 
8 Egg dance: “Lightly, nimbly, quickly, and with hairbreadth accuracy, 

she carried on the dance. She skipped so sharply and surely along be-
tween the eggs, and trod so closely down beside them, that you would 
have thought every instant she must trample one of them in pieces, or 
kick the rest away in her rapid turns. By no means! She touched no one 
of them, though winding herself through their mazes with all kinds of 
steps, wide and narrow, nay even with leaps, and at last half-kneeling.” 
J. W. von Goethe, Wilhelm Meister’s Apprenticeship, Book II, Chapter 
VIII. 

9 Proponents of AOP usually point to possible tool support here: a tool 
(such as an aspect-aware IDE) can highlight the potential targets of as-
pects in the program text. However, this highlighting is not without ran-
domness, either: it depends on the availability of the conditions C at ed-
iting time (which is a problem for aspects that are added later), and it is 
subject to change without notice, namely when an aspect programmer 
chooses to change C. 

text it needs access to. I find it difficult to imagine how “seman-
tic” conditions and their context specifications can be automati-
cally mapped to the surface structure of a program. Ultimately, I 
believe, semantic referencing as envisioned by Lopes et al. [42] 
will require automatic program understanding which, once avail-
able, will revolutionize the entirety of programming, conceivably 
making AOP, as well as many other techniques en vogue today, 
obsolete. 

4.3 Quintessence 
It seems to me that its nature makes AOP a rather delicate crea-
ture: when developed to the full, both obliviousness and quantifi-
cation conflict with its goals, but cutting back on them seems to 
deprive AOP of its core contribution. Reducing the obliviousness 
in a program not only comes close to reducing implicit invocation 
of advice to some variation of dynamically bound procedure call-
ing, it also reintroduces the very scattering AOP was to avoid. 
Reducing the quantification in aspects ultimately amounts to 
maintaining lists of places in a program the aspects are to advise: 
the obliviousness of a program to its aspects is therefore bought at 
the price of far-reaching intimacy of the aspects with the program, 
which thwarts modularization and thus the purpose of AOP. It 
may be my ignorance or lack of imagination, but I cannot see how 
to get out of this dilemma. 

5. AOP from a Software Engineering Perspective 
In the previous sections I tried to characterize AOP in abstract 
terms, which allowed me to point to some of its problems and to 
give reason to my belief that it will be very difficult to fix them 
without giving up the essence of AOP. For much of the rest of this 
essay I will try to carry over my findings to the real world of pro-
gramming, that is, to software engineering. 

5.1 AOP and Modularization 
One of the first things that I noted when digging into the body of 
available literature is that the AOP community revels in quoting 
Parnas, a man whose name is inseparably tied to the concept of 
information hiding and whose contributions to program modulari-
zation are respected to this date. In particular, Parnas’s seminal 
article titled “On the criteria to be used in decomposing systems 
into modules” [55] is almost universally referenced when speak-
ing of the separation of concerns, even though the term is never 
mentioned in it. This however is not a real problem, since the 
modularization criteria Parnas suggested do serve separation of 
concerns. My problem with citing Parnas’s work is that in my 
eyes it does not accommodate the AOP form of modularity; if 
anything, it forbids it. 

5.1.1 Modularity and Information Hiding 
This requires some explanation. At the time when Parnas’s cited 
article was written, modularity was already a well-established no-
tion, basically known as one that helps manage the development 
of large programs by dividing them into separate chunks that can 
be developed largely independently of each other: 

A well-defined segmentation of the project effort ensures 
system modularity. Each task forms a separate, distinct 
program module. At implementation time each module and 
its inputs and outputs are well-defined, there is no confu-
sion in the intended interface with other system modules. 
[…] Finally, the system is maintained in modular fashion; 
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system errors and deficiencies can be traced to specific sys-
tem modules, thus limiting the scope of detailed error 
searching. [55], quoting Gauthier and Pont “Designing Sys-
tems Programs” (Prentice-Hall, Englewood Cliffs 1970). 

At that time, so Parnas reported, modules typically consisted of 
one or more procedures that mapped to a phase or step of process-
ing (as derived, for example, from a flowchart); the data struc-
tures on the other hand, on which the procedures operated, were 
shared among the modules and thus were part of their mutual in-
terfaces. Parnas’s contribution to modularization was to deliver a 
novel criterion that guided the process of creating modules: each 
module should fully encapsulate one design decision so that later 
changes of this decision would be less likely to affect more than 
the hosting module. Parnas named this criterion “information hid-
ing” ([55], p. 1056), making reference to an earlier paper of his, 
titled “Information distribution aspects of design methodology” 
[54]. 
It is instructive to read this paper, too. Much to my surprise, Par-
nas did not write about (the benefits of) information hiding, but 
about the detrimental effects of the opposite, namely information 
distribution among programmers. In fact, he never even used the 
term “information hiding,” nor did he suggest what we know to-
day as “data encapsulation” (which for me had been more or less 
synonymous until then10). Instead, he made clear that information 
hiding (or, rather, information non-distribution) is not only a de-
sign issue affecting the structure of the product, but also a process 
issue: information of how something was implemented should not 
be shared among programmers working on different modules, be-
cause this would create untoward dependencies and hamper inde-
pendent development. In fact, in a recent defense of his earlier 
work he said that 

My early work clearly treated modularisation as a design 
issue, not a language issue. A module was a work assign-
ment, not a subroutine or other language element. Although 
some tools could make the job easier, no special tools were 
needed to use the principal, just discipline and skill. 
When language designers caught on to the idea, they as-
sumed that modules had to be subroutines, or collections of 
subroutines, and introduced unreasonable restrictions on 
the design. They also spread the false impression that the 
important thing was to learn the language; in truth, the im-
portant thing is to learn how to design and document. 
We are still trying to undo the damage caused by the early 
treatment of modularity as a language issue and, sadly, we 
still try to do it by inventing languages and tools. [15] 

That Parnas’s work was actually perceived that way is expressed 
by a contemporary quote from Brooks’s classic “The Mythical 
Man-Month”: 

D. L. Parnas of Carnegie-Mellon University has proposed a 
[…] radical solution11. His thesis is that the programmer is 
most effective if shielded from, rather than exposed to the 
details of construction of system parts other than his own. 
This presupposes that all interfaces are completely and 

                                                                 
10 an instance of the eternal confusion of data and information 
11 Brooks refers to a technical report here that was a precursor to reference 

[54]. 

precisely defined. While that is definitely sound design, de-
pendence upon its perfect accomplishment is a recipe for 
disaster. A good information system both exposes interface 
errors and stimulates their correction. ([8], Chapter 7) 

At that time, Brooks seems to have favored that all programmers 
should see all the material, so as to increase the overall quality of 
code and to spot flaws and bugs early. However, 25 years later he 
recanted and stated, “Parnas was right, and I was wrong about in-
formation hiding” ([8], Chapter 19), basing his change of mind on 
the insight that “information hiding […] is the only way of raising 
the level of software design.” 

5.1.2 Modularity and Data Encapsulation 
Although Parnas—with his suggestions to improve modularity of 
designs—did not call for new programming language constructs, 
he did suggest that data encapsulation (once more without resort-
ing to this term) is a viable criterion for decompositions respect-
ing information hiding, although not the only one: 

1. A data structure, its internal linkings, accessing proce-
dures and modifying procedures are part of a single mod-
ule. They are not shared by many modules as is conven-
tionally done. ([55], the first item in a list of “some specific 
examples of decompositions which seem advisable.”; Par-
nas’s emphasis) 

To today’s object-oriented programmers, this seems a matter of 
course, but at that time, it revolutionized thinking about modular-
ity: it suggested that modules can consist of procedures together 
with the data structures on which they operate (ideally hiding the 
latter behind the former), and that such a module no longer neces-
sarily corresponds to a certain phase or step of the processing. 
This was the first move in the direction of object-oriented pro-
gramming, as Brooks later acknowledged: 

Parnas’s information-hiding definition of modules is the 
first published step in [a] crucially important research pro-
gram, and it is an intellectual ancestor of object-oriented 
programming. He defined a module as a software entity 
with its own data model and its own set of operations. Its 
data can only be accessed via one of its proper operations. 
The second step was a contribution of several thinkers: the 
upgrading of the Parnas module into an abstract data type, 
from which many objects could be derived. The abstract 
data type provides a uniform way of thinking about and 
specifying module interfaces, and an access discipline that 
is easy to enforce. ([8], Chapter 19) 

The third step was the adding of inheritance which, as we know, 
breaks modularity of abstract data types (classes). But even with-
out inheritance, programming with abstract data types (that is, in-
formation hiding enforced by linguistic data encapsulation 
mechanisms12) is not without problems: taken to the extreme, it 
leads to the situation in which a single system level function (use 
case, concern, or whatever you want to call it) is distributed 
among all modules whose encapsulated data are involved in that 
function. This leads to the scattering of functionality that is so 
characteristic of object-oriented programming. In this light, I 
found it interesting to see that a similar problem was already rec-
ognized by Parnas, who warned us: 

                                                                 
12 which is not what Parnas had in mind! (personal communication) 
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If each of the functions is actually implemented as a proce-
dure with an elaborate calling sequence there will be a 
great deal of such calling due to the repeated switching be-
tween modules. The first [traditional] decomposition will 
not suffer from this problem because there is relatively in-
frequent transfer of control between modules. [55] 

Today this reads like a valid criticism of object-oriented pro-
gramming: when trying to understand, or debug, a function of an 
object-oriented program, the frequent transfer of control between 
modules (classes) is indeed a problem. But can AOP solve it? 
Before I proceed, let me make clear that I do understand that there 
is a difference between the scattering of code resulting from the 
decomposition of a function into subfunctions that are associated 
with the data they operate on, and the scattering of code imple-
menting “crosscutting” concerns such as tracing or logging, which 
is reflected in more or less identical pieces of code being found in 
several places. Also, the implementation of crosscutting concerns 
is usually tangled with that of other (crosscutting) concerns, 
which is typically not the case for subfunctions. On the other 
hand, both the subfunctions and the crosscutting functions access 
and operate on data elements held by the objects of the classes 
they are associated with; therefore, I believe that the following 
thought experiment of applying AOP to the modularization result-
ing from data encapsulation via classes (which AOP applied to 
OOP is invariably about) is legitimate. 
In order to arrive at a better modularization of concerns, AOP al-
lows that the scattered subfunctions are moved into an aspect. But 
if the original design that led to the scattering is guided by data 
encapsulation, the subfunctions are assigned to a module because 
they operate on the data contained in that module, and because 
changing the representation of the data would likely affect the 
implementation of the subfunctions. By moving the subfunctions 
to an aspect, this data dependency is not lifted, but is either 
• moved to the interface between the module and the aspect (if 

such an interface at all exists; see below), or is 
• left implicit, by granting the aspect general access to the data 

hidden in the module. 
The former makes evident in the interface the resulting coupling 
between an aspect and the original module. A change in the data 
structure captured by the module (its formerly hidden design deci-
sion) on which the subfunction and thus also the aspect depend 
likely entails a change of the interface and therefore also the as-
pect. Independent evolvability is therefore compromised. The lat-
ter suffers from the same problem, but is worse in that the pro-
grammers responsible for the design decision thought to be en-
capsulated by the module are not aware of the dependency of the 
aspect on that decision (because there is no explicit interface stat-
ing this dependency). In fact, granting the aspect the access that it 
needs amounts to a globalization of the data contained in the 
module. But this is exactly the situation that Parnas found to be 
prevailing at the outset of his work: modules hosting phases or 
steps of processing, and complex interfaces between modules that 
capture the shared design decisions, or dependence of all modules 
on global data structures. 
Now one might blame me for suggesting an improper use of AOP, 
one in which it is misused to implement a questionable design. 
Surely, such abuse of concepts is possible in all programming 
paradigms. But my main concern is not reverting to some design 
ideal thought to be long overcome (the division of a program into 

functions corresponding to steps or phases of processing, which 
may in fact be justified even in OOP); my main concern is the ex-
istence of a strong coupling between an aspect and its target, par-
ticularly if this coupling is left implicit, that is, not reflected in an 
explicit interface; since this impairs independent development. 
And this is the same, at least as far as I can see, for all but the 
most trivial crosscutting concerns factored out to aspects: when 
code is moved out of its context to some other place, it must take 
(a reference to) the context that it depends on with it, thereby es-
tablishing a coupling between its old and its new location. Only if 
the context that it depends on is already published in the interface 
of its old host, independent development will not be compromised 
by this move. Given that classes hide design decisions, my feeling 
is that this will not often be the case. Therefore, the effect of AOP 
is likely less (or worse) modularity and not more (or better). 
Now I will not ignore that data encapsulation as realized in ob-
ject-oriented programming languages à la Java is not without 
problems. In fact, it is often difficult, or even impossible, to as-
sign procedures to a class so that they depend only on the data 
structure represented (or hidden) by that class, and no other. The 
availability of C++’s friend functions and so-called multi-methods 
(methods whose late binding depends on the dynamic types of the 
receiver and the parameters) in other languages provide sufficient 
evidence for this. But as far as I can see, modularity problems of 
this kind can only be solved by introducing units larger than sin-
gle objects (or their classes) as modules. Splitting a class into a 
class and an aspect produces smaller, strongly coupled units; it 
leads to more and larger interfaces, which is counterproductive to 
improving modularity. 

5.1.3 Modularity and Interfaces 
For all I know, the concept of a module is meaningless without 
that of an interface.13 Interfaces form the borders between mod-
ules across which control flow and data is passed; they specify the 
functions that can be called and the variables that can be ac-
cessed.14 Interfaces represent the coupling between modules—
only if the interface between two modules is empty are the mod-
ules completely decoupled. If the interface is not empty, modules 
are decoupled to the extent that changes on either side are admis-
sible without notice as long as the interface is kept constant. Note 
that this is independent of what is explicitly specified in the pro-
gram text to be the interface: interfaces between modules exist 
regardless of what can be (or is) declared by the available means 
of the programming language used. However, leaving interfaces 
implicit is a bad start for independent development; quite the con-
trary, to ensure independent development, as much must be made 
explicit as possible. 

                                                                 
13 Both Gauthier & Pont and Brooks above stress the significance of inter-

faces in connection with modules, which has been a consistent theme in 
Parnas’s writings. Also, the ACM Computing Classification System 
lists modules and interfaces as one common entry (under D.2.2, “Design 
Tools and Techniques”). 

14 Depending on definition, interfaces also specify protocol, that is, the 
sequence in which procedures can be called and variables can be ac-
cessed. Certainly, this information was part of the interface Parnas had 
in mind. However, most contemporary programming languages support 
only weaker notions of interfaces, namely sets of signatures. The re-
maining information must be communicated using means outside the 
programming language (that is, specification or documentation). 

488



5.1.4 Provided and Required Interfaces 
Work on component-based programming, which relies heavily on 
components as modules and on the explicit specification of the in-
terfaces between them, has led to the notion that interfaces come 
in two complementary forms: a module can have provided and 
required interfaces, and one module’s required interface is an-
other module’s provided interface. A provided interface is basi-
cally a collection of program elements a module offers to its cli-
ents. A required interface on the other hand is a set of program 
elements a module needs from some other module for performing 
its function. In a system composed of modules, there needs to be a 
match between each required interface of one module and a pro-
vided interface of another. 
It is instructive to try and apply these terms to aspects (as mod-
ules) and their targets (advised or base modules). Clearly, the 
items passed between the target and an aspect (C, A) are captured 
by the context attached to (C, A), which qualifies for an interface 
specification. But is this interface a required or a provided inter-
face? Because the aspect provides a particular service through 
which it extends a program, one might be led to think of it as a 
provided interface. However, the matching required interface of 
the target remains implicit—the target program does not specify 
that it needs something, let alone specify what precisely it needs. 
Therefore, there is no visible (as made explicit by a required inter-
face) coupling between the target module and the aspect—the tar-
get does not appear to depend on the aspect. 
From a different viewpoint, one might argue that it is actually the 
target module that provides a set of program elements, which are 
required by the aspect to perform its function. And indeed, the 
aspect specifies a required interface in the guise of its condition 
C: it specifies the program elements the aspect needs to query 
from its target in order to achieve its function (see Ostermann et 
al. [51] for a similar view). This reflects the “inversion of depend-
ency” [49] so characteristic of AOP: technically, although the as-
pect complements the target program, the aspect depends on the 
target and not vice versa. However, despite this dependency the 
target module comes without an explicit counterpart interface 
specification: its provided interface is implicit at best. 
Seen either way, the target specifies no interfaces that could be 
matched with those of its aspects. For the programmer of the tar-
get module this means that there is no visible (explicit) coupling 
and, more importantly, that there is nothing to keep constant 
across all possible changes of the secrets of the module. This 
however ignores the part of the aspects which do specify inter-
faces that must not change if the aspects are to remain unaffected 
by target module modifications. 
Now one might argue that requiring aspects and their targets to 
explicitly specify provided and required interfaces is unfair; after 
all, the interface between a class and its subclasses is not only not 
divided into a provided and a required interface, it is also mostly 
implicit in most object-oriented programming languages in use 
today (except for the rather weak notion of declaring members as 
“protected”). While this is certainly correct, it is also widely ac-
cepted as substantial and valid criticism of OOP as a form of 
modular programming: in fact, as exposed by the so-called fragile 
base class problem [46], subclassing breaks the modularity of 
classes. Needless to say that subclassing impedes independent de-
velopment unless (a) the implicit interface between a class and its 
subclasses is made explicit, or (b) a class and all its subclasses are 

assigned to the responsibility of one team, and can thus be re-
garded as one module. Surely, adding interfaces on the targets’ 
side means giving up much of the attractiveness of the approach, 
and packaging a class and its aspects into one module is counter 
to the intent of AOP. But denying attacks against the claimed 
modularity of AOP by pointing at similar weaknesses in object-
oriented programming is no way out of this dilemma. 

5.1.5 Modularity and Dynamic Interfaces 
It should be clear that resorting to a purely dynamic AOPL 
(whose conditions make no reference to static parts of a program) 
is no escape: even if dynamic interface specifications (behavioral 
interface specifications [67] for example or event sequence speci-
fications [3, 37, 65]) are supported by an AOPL, in order to also 
support modularity (viz. independent development), they will 
have to be provided at both sides, the target’s and the aspect’s. In 
particular, mutual conformance of the interfaces, as well as adher-
ence of the implementations to their interfaces, are promises made 
at development time. After all, this is what modularization is 
about. 

5.1.6 The Modularity of Aspects 
Now one could argue that while modularity of the (crosscut) tar-
get program is sacrificed, modularity of the crosscutting concerns 
is won, and that this may be better in certain cases. However, 
crosscutting concerns may crosscut each other, and whenever the 
actions introduced by an aspect are part of the program and thus 
candidates for aspect application (as is the case for instance in 
AspectJ), the modularity of aspects is broken in exactly the same 
way as that of target programs. 

5.1.7 Summary 
Introducing explicit interfaces on the target modules’ side (includ-
ing annotations that indicate where aspects can apply) can declare 
the coupling with possible aspects, but then, as argued in Section 
4.1, aspect activation not only becomes almost indistinguishable 
from late bound, guarded subroutine calling, it also re-introduces 
the very scattering AOP was to avoid. On the other hand, more 
abstract interfaces on the targets’ side would require equal relaxa-
tion of the required/provided interfaces on the aspects’ side, but it 
is unclear how an aspect (or any system functionality for that mat-
ter) can be programmed without concretely specifying somewhere 
what it needs access to. Once again, it may be my lack of imagi-
nation, but I can see no way of fixing this situation—to me, it ap-
pears that the idea of AOP is at odds with interfaces and thus also 
with modularization. (For a detailed discussion of related work, 
see the appendix). 
To conclude: There may be means other than data encapsulation 
to realize information hiding as a design discipline, but one in-
variant is that they must grant independent development. While I 
agree that independent development is an important problem of 
programming even today, I find it hard to accept that the notion of 
a module––as one of the most fundamental to software engineer-
ing––is reinterpreted to the extent that its original meaning is no 
longer recognizable. A module is (and unless we manage to dele-
gate programming to machines entirely, will continue to be) a unit 
of independent development, for such a concept is (and most 
probably always will be) needed. If aspects don’t support it, 
please don’t call them modular. Call them something else. 
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5.2 AOP and the Organization of Source Code 
Regardless of whether aspects modularize, one could still argue 
that they are a good way of organizing source code. Since indeed 
every nontrivial application comes with several more or less inde-
pendent criteria according to which its source code could be struc-
tured, and since both scattering and tangling of code is in fact a 
nuisance, such is a legitimate goal. In fact, the late Dijkstra, 
whose works are also commonly cited in the AOP community 
(and seem to be the bibliographical sources of the term “separa-
tion of concerns” [16, 17]), applied considerable thought to the 
organization of source code. 
But as it turns out, AOP is also at odds with the work of Dijkstra, 
in particular the idea of structured programming. In his famous 
letter to the Communications of the ACM titled “Go to statement 
considered harmful” Dijkstra argued that a programming lan-
guage should set up a coordinate system according to which any 
trace of a program is describable as a simple set of coordinates 
telling one precisely where the program is, and how it got there 
(by knowing the previously executed statement). For a sequence 
of statements and for a branch such a coordinate would be the 
program pointer (telling one that the program got there from the 
statement preceding in program text, including how a possible 
prior condition evaluated), for a loop the program counter plus a 
loop counter, and for a subroutine the program counter plus an-
other program counter pointing to the site where the subroutine 
was called (basically the call stack). Dijkstra stressed that the co-
ordinate system was to be set up automatically by the program-
ming language, not the concrete program (and hence not the pro-
grammer). In other words, program organization should be pro-
moted by the programming language, and not left to the wisdom 
of the programmer. 
Dijkstra’s complaints led to the maxim that each control structure 
of so-called structured programming should have precisely one 
entry and one exit point. Goto statements break this condition, 
torpedoing all conceivable coordinate systems. Now it can be ar-
gued that the net effect of AOP on any of the mentioned control 
structures is equally destructive: since an aspect can plug into just 
about any point of execution of a program, one can never tell the 
previous (or following) statement of any statement. In fact, as has 
been pointed out in “AOP considered harmful” [13], AOP intro-
duces a modern variant of the comefrom statement, which was 
once suggested as a humorous contribution to the goto discus-
sion, the joke being that such an inverse form of calling—very 
much like the implicit invocation mechanisms of AOP [20]—
renders even small programs completely unreadable [9]. 
Today, Dijkstra’s demand for a firm coordinate system is no 
longer dogma. In fact, as regards the single entry and exit point 
criterion, we now know that having multiple exit points from con-
trol structures can improve readability of programs, even though 
the reader does not know (without additional pointers) the state-
ment executed immediately before the exit. The reason that we 
accept this breaking with formal structuredness is that the alterna-
tive, introducing guards that result in skipping the rest of a control 
structure, is often worse. Allowing multiple entry points, on the 
other hand, is widely rejected, but not because they formally 
break with Dijkstra’s suggested coordinate system, but because 
experience has shown that they are rarely needed, yet are almost 
always difficult to understand. So we should take Dijkstra’s coor-
dinate system as one attempt at an explanation for what it takes 

for a human to be able to map the dynamic control flow of a pro-
gram to its static structure. 
Now Dijkstra’s argument can be seen as basically one about the 
property of locality in programs. As discussed by Filman and 
Friedman [22, 23], many advances in the history of programming 
have broken with locality; in fact, even subroutine calling (as one 
of the four basic “structured” control structures) does. While 
Dijkstra’s suggested coordinate system takes the non-locality of 
subroutines into account (by adding to the coordinates a pointer to 
the call site), the next step in programming language history, dy-
namically bound procedure calls, require addition of yet another 
pointer, namely one pointing to the bound procedure, for without 
this, one would not know which the statement executed immedi-
ately before the one statically succeeding the call was. Experience 
with object-oriented programming has shown that this advance-
ment leads to problems in program understanding, in particular in 
(mentally) tracing program execution. This is worsened by the 
fact that in languages with dynamic class loading (such as Java), 
the number of possible branches depends on the configuration of a 
system, that is, on the set of alternative implementations (sub-
classes) provided at execution time. 
The implicit invocation of aspects can be viewed as the next logi-
cal step in this development. In order to know the predecessor (in 
execution) of a statement, one must only add a pointer to the as-
pect just called (if any). The problem is that the points in the pro-
gram in which I need this pointer (the selected join points) are not 
marked in place, as is the case for a (statically or dynamically 
bound) explicit procedure call. Even with tool support annotating 
the so-called join point shadows [31] in the program text (that is, 
the places where advice may be called), these places depend on 
the final configuration of the system, that is, the number and kind 
of aspects added (cf. Footnote 9). This is in contrast to the prob-
lem induced by dynamically bound procedure calls, in which I 
know, independent of configuration, where I need a pointer to the 
called procedure (only to which procedure I may not know). 
Thus, AOP adds another dimension of not knowing what just 
happened, or where I have come from, to programming. The 
question is whether the possible gains are worth the confusion it 
causes. 
Certainly, more time will have to be allowed before this latter 
question can be answered. However, I will allow myself a little 
speculation here. While trading understandability of a program for 
expressiveness of a language may be in the tradition of progress 
in computing, it seems to me that AOP is pushing expressiveness 
a little too far. Surely, it is still some way from unconstrained 
metaprogramming (which is thought to be too difficult to be mas-
tered by the average programmer), but it may just be that a 
healthy trade-off between expressiveness and understandability 
has already been found, and that this trade-off does not include 
the implicit invocation mechanisms of AOP. 

5.3 AOP and the Globalization of Local Variables 
In the wake of Dijkstra’s letter, many other programming con-
cepts were questioned along similar lines of argumentation. 
Among them, and with direct relevance to AOP, is an article by 
Wulf and Shaw titled “Global variable considered harmful” [66]. 
In it, the authors argue that visibility of variables outside a pro-
gram segment under consideration strain the intellectual abilities 
of programmers, because of the phenomena of “indiscriminant 
access” and “vulnerability”, where 
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the former reflects the fact that the declaror [sic] has no 
control over who uses his variables; the latter reflects the 
fact that the program itself has no control over which vari-
ables it operates on. Both problems force upon the pro-
grammer the need for a detailed global knowledge of the 
program which is not consistent with his human limitations. 
[66] 

Transferred to AOP, the “declaror” of a variable is the target pro-
gram, which indeed has no control over which aspects use its 
variables, and the “program” is the aspect which, if programmed 
without knowledge of the target, “has no control over which vari-
ables it operates on”. Because of its very nature, AOP not only 
makes the control flow unobvious from the program text, it also 
effectively “globalizes” all variables aspects can get access to. 
The conclusion drawn by Wulf and Shaw—that in the presence of 
global variables programmers need “a detailed global knowledge 
of the program”—is therefore also true for the presence of aspects 
(cf. also, for example, the work of Aldrich, Clifton, Kiczales, and 
their co-workers [2, 10, 34]). 
While the globalization of local variables is a worrying problem, 
there is another one related to context that somewhat alleviates it, 
but at the same time severely restricts the feasibility of AOP: the 
problem of how to get hold of the context needed by an aspect. 
While it is difficult enough for a simple aspect to specify in itself 
(that is, locally) the context it needs access to in such a way that 
the specification applies to all points of a program which the as-
pect is to address (Sullivan et al. [63] provide a list of such prob-
lems found using AspectJ), more complex crosscutting behavior is 
much more intertwined with a single location of the target (it may 
in fact involve multi-point patterns in both time and space), and 
also much more diverse in its appearance among different loca-
tions. Also, in all but trivial cases combining separated concerns 
(“weaving”) will be much harder than inserting one concern be-
fore, after or around another (see Ernst [21] for a concrete exam-
ple of this). To phrase it in mathematical terms: AOP is based on 
the assumption that crosscutting concerns are scalars that can be 
factored out of a vector (a program) without leaving a trace, and 
that this factoring out (separation of concerns) can be reversed 
without any loss in meaning; however, weaving an aspect into a 
program is not always as simple as multiplying a scalar with a 
vector. 

6. Some Observations on the Use and Usefulness 
of AOP 
As expressed in some detail in the previous section, my opposi-
tion to aspects and AOP as a programming discipline is based 
mainly on my impression that it dismisses basic software engi-
neering principles, and that in order to restore these principles, it 
must be stripped of its key characteristics. On the other hand, ad-
hering to these principles is not always compulsory, so that there 
are application domains in which AOP should be unproblematic. 
However, is seems to me that domains of this kind are not core to 
the motivation of AOP; rather, what I find amply are application 
examples that, besides suffering from the modularity and structur-
ing problems discussed above, are questionable with regard to 
AOP’s net effect on systems. To make my point clearer, I will 
contrast examples for which I believe AOP may be useful with 
examples of how it seems to be actually used.  

6.1 Usefulness of Aspects in Generated Code 
First and foremost, AOP’s unpunished use should be granted 
where modularity and structuredness are unimportant. This is for 
example the case in code generation, where the generated code—
not the source to the generation!—may be aspect oriented without 
causing any problems of the above mentioned kind. Thus, it 
would seem that natural application areas of AOP are ad hoc lan-
guage extensions (including domain-specific languages) and 
model-driven development (MDD). The former could for instance 
enhance an existing OOPL with language constructs specific for 
security, transaction management, or design by contract. The lat-
ter seems particularly interesting since the primary assets of 
MDD, models, usually come with many different views of a sys-
tem which, like aspects, need to be woven together. And yet, 
model integration—that is, the integration of the information con-
tained in diagrams of various kinds—is still mostly an open prob-
lem in modeling, and it will be interesting to see whether AOP 
can actually contribute to its solution [60]. 

6.2 Usefulness of AOP for Component-Based Programming 
Also, I believe that AOP is useful where proper modules are a 
hindrance rather than an advantage. Ironically, this is to a certain 
extent the case in component-based programming: namely in the 
special (but not infrequent!) situation in which a composite cannot 
be formed out of available components without breaking into 
them—that is, without disrespecting their designed interfaces. In-
deed, in the non-ideal world of programming practice, available 
components sometimes happen to be one bit off what is actually 
needed (see Kiczales et al. on open implementations [33] for an 
account of such cases), and the alternatives to breaking modular-
ity seem just as unattractive. In these cases, AOP-related tech-
niques may “digest” components (that is, dismantle and reassem-
ble them) to form a new whole, giving this whole a new hull pro-
viding the interface to the rest of the world. Seen this way, AOP 
grants the writers of so-called glue code entirely new possibilities. 
The price is, obviously, that because the inner components are no 
longer modules, they cannot be evolved independently; instead, 
the newly formed component must be seen as an atomic whole 
that can only be read, understood, and changed in toto. Because 
this procedure of digesting components can be applied recur-
sively, it can be abused to destroy all modularity in a system, 
turning it into one big monolith comprising what used to be mod-
ules.15 Thus, it must be used with measure; in particular, because 
of the above-mentioned lack of independent evolvability associ-
ated with it, I don’t think that it is justified to found a new disci-
pline of modular software development on it.16 

6.3 Observed Uses of AOP 
While AOP seems to be useful for the above-mentioned coding 
problems, it appears that it is mostly used to solve quite different 
ones. When looked at more closely, some of these examples show 
that AOP can be used to fix problems to which it itself (although 
not alone) contributes. I admit that my observations presented in 
                                                                 
15 An alternative way of looking at it is that there exist no modules prior to 

system composition, and that modularization takes place only after this 
composition has been done [34]; see the appendix for a discussion. 

16 Aspectual collaborations [41, 52, 53] as promoted by Ovlinger et al. are 
an alternative approach to combining aspects and modularity in the 
form of components; again, see the appendix. 
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the following are somewhat nit-picking, nevertheless I think that 
the motivation of a new programming model should not resort to 
examples that can be attacked so easily. 

6.3.1 Aspects for Logging, Tracing, and Debugging 
Logging, tracing, and debugging are perhaps the canonical appli-
cations of AOP—they are returned to almost universally in papers 
on the subject. Although we already have excellent tools for log-
ging, tracing, and debugging at hand that work without AOP (take 
for instance the Eclipse IDE), I will accept that AOP can offer an 
alternative approach. However, since generally aspects can plug 
their advice into just about any point in a program’s execution, 
tracing, logging, and debugging become important concerns even 
in programs that without aspects would not need them (because 
they have been written in such a way that program flow is obvi-
ous from its static structure, or that the program is obviously cor-
rect). In the extreme case, one will find oneself introducing a trac-
ing, logging, or debugging aspect only to trace, log, or debug 
other aspects executed. So in a way, while helping to solve a par-
ticular category of programming problems, AOP also adds to 
them. 

6.3.2 Aspects for Security Issues 
An aspect can intrude into a program (its components, or mod-
ules) in order to implement security, but what if it fails to do so? 
What if it never intended to? Can security aspects be installed that 
check the validity of aspects, that authorize and/or authenticate 
them? Perhaps they can, but not only is this a bootstrapping prob-
lem (or are there aspects that can ensure their own security?), but 
this also poses the question of what the net effect of AOP on sys-
tem security is. As with tracing/logging/debugging above, not all 
applications will explicitly need to address security issues, but if 
they are executed in an AOP environment, they had better do so. 

6.3.3 Aspects for Program Verification 
Aliasing is a well-known problem for the verification of object-
oriented programs, since an alteration of one object’s value (as 
addressed through a reference) can change the value of what ap-
pears to be another object, but is really the same object addressed 
by a different reference (its alias) [32]. In short, with aliasing the 
simple verification problem 

{x.a = true} y.a := false {x.a = true} 
can become quite hard to prove in a modular fashion, because x 
and y might refer to the same object. 
With AOP, the problem becomes even worse, because aspects 
may access and change the values of variables in their context 
even between the executions of two consecutive statements. In 
fact, the above aliasing problem can be rephrased as an aspect 
problem of program verification: in an aspect-oriented program, it 
is unclear how 

{x = true} y := false {x = true} 
could be proven correct without performing a whole-program 
analysis. Once more, aspects can come to the rescue, by introduc-
ing runtime verification of programs (for example, Bodden & 
Stolz [6, 62] and Lorenz & Skotiniotis [43]); however, introduc-
ing aspects that verify programs with aspects (including them-
selves) [36] sounds more like an academic exercise than a practi-
cal thing to do. To paraphrase Hoare, one should strive to write 
programs in such a way that they obviously contain no bugs; with 

AOP, however, the best a programmer not aspect aware can 
achieve is write programs that contain no obvious bugs. 

6.4 Conclusion 
The telephone was first used for broadcasting concerts, and radio 
for peer-to-peer communication. The gramophone was thought to 
be a replacement for newspapers, and Gutenberg’s moveable type 
was designed to reproduce exactly handwritten letters. In each 
case, it took many years until a truly successful use of the inven-
tion was found. I wouldn’t be surprised if AOP ended up being 
used for something quite different from what it is thought to be 
good for today. 

7. New Programming? 
If I am right and if the problems I discussed above are all real 
problems of AOP, why, then, is it such a success? Is it a success? 
Measured in terms of the number of successful commercial pro-
jects, it is perhaps still too early to judge. Measured in terms of 
the attention it receives, in academic circles in particular, it must 
be called a tremendous success. After only a few years, accep-
tance rates of the AOSD conference—the venue of the AOP 
community—seem to settle at approx. 20% (a score comparable 
to that of this conference (OOPSLA), which is now in its 21st 
year), and other major conferences in the field of programming 
have installed their own AOP tracks. In fact, within an extremely 
short period of time after its inception the number of papers and 
theses on the subject has risen beyond what can reasonably be 
overseen by a single researcher, a growth that is comparable only 
to the greatest revolutions in the history of programming. 
There are several possible explanations to this phenomenon. One 
is given in Gabriel & Steele’s report “The evolution of Lisp” [58], 
in which the authors describe a general evolution pattern of pro-
gramming languages. According to this pattern, a successful lan-
guage requires an acceptance group that is itself successful. Ac-
ceptance in turn requires, among other factors, solving a pressing 
problem and having the right cachet. Surely, AOP addresses an 
important problem, namely the modularization of crosscutting 
concerns, but the jury is still out on whether AOP can actually 
solve it (I have certainly written enough about my doubts in this 
essay). Regarding cachet, AOP seems to have plenty: it has the 
aura of a leading edge technology, it is supported by a number of 
OOP luminaries, and it comes with its own fancy lingo. In fact 
(and referring to [58] for an example of “right cachet”), seen from 
the outside watching someone do AOP is a little like watching 
someone own a Mac: one is not really sure of its advantages, but 
is willing to accept that it is superior technology. 
But there is also a simple economics-based explanation for the 
success of AOP in academia. The last revolution in program-
ming—object-oriented programming—is already more than a 
generation old, and although many new things have been tried 
since, none has had comparable impact. As a result, tremendous 
pressure (in the form of program committees expecting new ideas 
to be presented and funding agencies waiting for new, promising 
strains of research to be financed) has built up, and it is quite clear 
to everyone that the next “big thing” will attract enormous atten-
tion and resources. We have all been asking ourselves what this 
thing could be. 
AOP blesses us with a whole concert of innovations: a new way 
of structuring code [64], resulting in new kinds of modules with 
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new interfaces [34], allowing new ways of composition [45], etc. 
In fact, there are so many new concepts (or, rather, new variants 
of old concepts) attached to AOP that one cannot help but view it 
a new programming paradigm. Therefore, from a purely phe-
nomenological standpoint it certainly qualifies as the next big 
thing in programming, as the “post-object programming” mecha-
nism [20]. 
Economically, the last century ended with the insight that tradi-
tional laws are not easily put to rest: the much praised “new econ-
omy” turned out to have some really old problems. “Old” modu-
larity, interfaces, and independent development are so fundamen-
tal to disciplined programming that it is difficult to imagine how 
they could be replaced with new variants. Instead, it may be that 
the belief in AOP is just a belief in “new programming.” 

8. Conclusion 
Given that AOP has set out to modularize crosscutting concerns 
(its methodological claim), but by its very nature (its mechanics) 
breaks modularity, I think the current success AOP enjoys is 
paradoxical. For all I can see, this paradox cannot be resolved by 
adjusting the mechanics of AOP so as to respect modularity, since 
then whatever remains of it appears to be only mildly different 
from other programming techniques currently not thought of as 
being aspect-oriented. As a way of organizing source code, AOP 
has its merits, namely the “localization” or “compartmentalizing” 
[40] of code belonging to one concern in one place, but almost 
ironically, this requires sacrificing locality (“local in that [a state-
ment] was almost always proximate to the statements executing 
around it” [22], p. 22) and thus structuredness in Dijkstra’s sense. 
The net effect on program understandability is not indisputable. 
I would feel much better about AOP if it gave up its “modulariz-
ing the un-modularizable” [40] promise and instead focused on 
blending its key concepts with those of other programming mod-
els17, reserving its unbridled use for coding problems for which 
modularity and structuredness are no issues. Alternatively, it 
could provide us with a definition of what it is that is consistent 
with what it aims to be good for. 

                                                                 
17 the coherence requested in the call for this conference! 

Epilogue 
If you think that my claims are polemic, or those of a cynic, or of 
an envier, I will agree, yet only to the extent of admitting that 
they are somewhat overstated. But why am I doing this? 
During my works on my doctoral thesis in Medical Informatics 
back in the early nineties, I looked into Lotfi Zadeh’s fuzzy set 
theory. At that time, the theory was already a generation old, and 
Charles Elkan’s “The paradoxical success of fuzzy logic” [19] 
had just appeared. In the same year, James Bezdek wrote the fol-
lowing in the editorial of the inaugural issue of the IEEE Transac-
tions on Fuzzy Systems: 

Every new technology begins with naive euphoria—its in-
ventor(s) are usually submersed in the ideas themselves; it 
is their immediate colleagues that experience most of the 
wild enthusiasm. Most technologies are overpromised, 
more often than not simply to generate funds to continue 
the work, for funding is an integral part of scientific devel-
opment; without it, only the most imaginative and revolu-
tionary ideas make it beyond the embryonic stage. Hype is 
a natural handmaiden to overpromise, and most technolo-
gies build rapidly to a peak of hype. Following this, there is 
almost always an overreaction to ideas that are not fully 
developed, and this inevitably leads to a crash of sorts, fol-
lowed by a period of wallowing in the depths of cynicism. 
Many new technologies evolve to this point, and then fade 
away. The ones that survive do so because someone finds a 
good use (= true user benefit) for the basic ideas. [5] 

The timescale he assigned to his observation (specialized to fuzzy 
models) is depicted in the figure above (reproduced from the edi-
torial [5] with kind permission by the IEEE). 
Now reading Bezdek’s observation in the context of this essay not 
only uncovers its author as a cynic, but also as one who hasn’t re-
alized that he is as much part of the game as the ones he criticizes 
for playing it. Yet the enthusiasts should forgive him, for his role 
is not an unimportant one: the earlier the depth of cynicism is 
reached, the sooner the true user benefits are discovered, and the 
sooner AOP can converge to the asymptote of reality. Sometimes, 
to be truly good, good cops need bad cops, so here I am, ready to 
take the bashing. 

© 1993 IEEE 
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Appendix: Known Attempts to Restore Modularity 
in Aspect-Oriented Programs 

Pointcut Interfaces 
A workshop paper by Gudmundson and Kiczales first proposed to 
reduce the adverse effect AspectJ style AOP has on modulariza-
tion (information hiding) by moving the pointcut definition closer 
to the target modules, that is, in proximity of the places where 
they match [28]. For this purpose, it introduced what its authors 
called pointcut interfaces: basically collections of pointcut signa-
tures (pointcut name plus argument types). According to their 
suggestion, the definition (implementation) of the pointcut inter-
face, that is, the provision of a concrete pointcut expression, is the 
responsibility of the module that exports the interface, which can 
be a class, a package, or a whole program. This means that the 
declaration and the definition of the pointcut are contained in the 
same syntactical unit, but outside the aspects that depend on it. 
Particularly if this unit is a class, it should be comparatively easy 
to maintain the contract of a pointcut interface (keep the interface 
constant) when the definition of the class is changed. In order to 
allow independent development of target modules and aspects, 
pointcut interfaces should be defined together with all other mod-
ule interfaces—that is, at the project’s outset (with modifications 
possible as the design evolves). 
It is not obvious to me why the idea of pointcut interfaces, which 
was picked up by other authors (for example, [1, 2, 27, 63], all 
discussed in the following subsections), appears to have not been 
pursued further by Kiczales, who now seems to favor other kinds 
of aspect interfaces ([34]; also discussed below). One possible 
reason for this may be that in order to have the linguistically en-
forceable effect of pointcut awareness, it is not sufficient that 
pointcuts reside in the proximity of the target modules they apply 
to: rather, the aware have to state explicitly what they are aware 
of. This however would amount to a kind of (target) tagging 
(comparable to that of classes declaring to implement certain in-
terfaces) that would reduce obliviousness and increase intimacy 
[20, 63] as well as scattering to levels thought to be incompatible 
with the original idea of AOP. On the other hand, just keeping 
pointcut definitions separate from the aspects depending on them, 
in some third place but without any reference from the code they 
quantify over, is not a big improvement over keeping them within 
the aspect.  

Open Modules 
Aldrich notes that in order to retain some contribution of AOP 
while at the same time respecting the “intended information hid-

ing boundaries” (aka interfaces) a compromise needs to be found 
[1, 2]. His so-called Open Modules enables aspects to advise all 
external uses of program elements exported in the module’s pro-
vided interface, as well as internal joinpoints that are declared 
public (“open”) by that interface. All other intrusions from as-
pects, including advice on internal use of published elements, are 
prohibited. Because in Open Modules all interfaces toward an as-
pect are explicit, a module can hide the information considered as 
its secret behind these interfaces, allowing it to evolve independ-
ently from aspects. 
As Aldrich himself notes, the pointcut interfaces of Open Mod-
ules can be thought of as definitions of extension points and the 
execution of advice at these points as a kind of callback to client-
provided functions [1] (which lets the pointcut interfaces appear 
as required interfaces; cf. discussion in Section 5.1.3). In fact, as 
pointed out by Aldrich [2], “explicitly exposing internal events in 
an interface pointcut means a loss of some obliviousness in the 
distributed development case, since the author of the module must 
anticipate that clients might be interested in the event.” But modu-
larity is all about distributed, independent development (see Par-
nas [54, 55] and also Section 5.1), and the price for modularity is, 
once more, the introduction of some “pluggable” procedure call 
through the back door.18 

Crosscutting Interfaces 
Griswold et al. suggest the introduction of crosscutting interfaces 
(XPIs) [27] as interfaces “that base code designers ‘implement’ 
and that aspects may depend upon” [63]. For this, they assign de-
sign rules to XPIs as a kind of contract which the programmers of 
the base code must observe. At the aspects’ side, each XPI comes 
with a “syntactic part” that exposes the signature of named point-
cuts, but not its “hidden implementation” ([27], p. 54), that is, the 
part that specifies the concrete pointcut expressions. Note that 
storing the implementation in the interface is somewhat unusual, 
but must be seen as technical tribute to AspectJ as the language in 
which XPIs are currently implemented. In fact, the authors of 
XPIs deliberately wanted AspectJ to remain as is, in order not to 
subject their work to the lack of adoption that is usual for lan-
guage modifications [63]. However, this technicality impairs in-
dependent module evolution to a certain extent, since the imple-
mentation of the crosscutting interface is not part of the imple-
mentation of the module (cf. the discussion of Gudmundson and 
Kiczales’s pointcut interfaces above, which suffer from the same 
problem if the pointcut crosscuts more than a single class). 
Griswold et al. note that the decoupling of aspects from their 
bases through XPIs is comparable to that of a caller from the 
called module through the provided interface (the API) of that 
module. In fact, just as a module can remain (and usually is) 
oblivious of its specific callers (a property called feature oblivi-
ousness in Sullivan et al. [63]), and although the module needs to 
prepare for aspects (by providing an XPI), it may remain oblivi-
ous of which aspects exactly utilize this interface. However, while 
the API of a module is usually designed to serve a specific goal 
                                                                 
18 Another criticism of Open Modules expressed by Sullivan et al. is that 

since the pointcut interface is tied to a single (hierarchical) module, the 
interface is not crosscutting [63]. One could add that therefore, Open 
Modules are not aspect oriented. Note that the same argumentation can 
be applied to the pointcut interfaces suggested by Gudmundson and 
Kiczales, if they are assigned to single classes. 
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(the purpose of the module), specification of the XPI requires an a 
priori decision what the crosscutting behavior of a system is. To 
address this, Sullivan et al. [63] state they designed their XPIs by 
“ask[ing] the question, what constraints on the code would shape 
it to make it relatively easy to write the aspects at hand, as well as 
support future aspects?” This is exactly the loss of obliviousness 
noted by Aldrich. 

Restoration of Modular Reasoning 
Clifton and Leavens note that AOP, although heavily citing Par-
nas’s article [55], is at conflict with it, basically because the 
obliviousness property contradicts the independent comprehensi-
bility required of a module (a notion called modular reasoning) 
[10, 11].19 Following the behavioral subtyping analogy they sug-
gest that the effect of aspect application should be checkable so as 
to not alter the behavior of a module in unexpected ways. For this, 
they suggest to divide aspects into so-called spectators (formerly 
called observers [10]) and assistants, the former not changing (“in 
some well-defined sense”) the behavior of the modules they ad-
vise, the latter only doing so to an extent made explicit in a suit-
able “module interconnection specification” to be found “in a 
well-defined place relative to the client module” [11]. This would 
retain some of the flexibility associated with the obliviousness 
property of AOP, and at the same time allow modular reasoning. 
Support for automated classification of aspects as spectators 
comes from a whole-program analysis described by Zhao & Ri-
nard [57], which is also capable of pointing to specific problems 
of assistants. However, it seems that the module interconnection 
specification suffers from the same problems as the definition of 
pointcut interfaces spanning several modules (discussed above). 
Also—although only a marginal note—even spectators can be 
harmful, if only by spying on local (private) data and passing it on 
to some other, malevolent party. For a more detailed discussion, 
see Dantas & Walker’s recent work on “Harmless advice” [14]. 

Aspect-Implied Interfaces 
In another attempt to restore modular reasoning, Kiczales and 
Mezini argue that “aspects cut new interfaces through the primary 
module structure” [34]. De facto, this means that a module is no 
longer sovereign over its own interfaces; rather, they are forced 
upon it by system composition. One immediate consequence of 
this is that modules cannot be changed independently of their as-
sembly, simply because it is unclear which interfaces to keep con-
stant. This of course leads independent development and with it 
also the module concept ad absurdum. 
A closer look at Kiczales and Mezini’s proposal reveals that they 
suggest that a tool computes the aspect aware interfaces given a 
complete system configuration (cf. Footnote 9). While this may 
allow modular reasoning in the presence of aspects, it does so 
only after the system has been composed, a stage at which mod-
ules and their interfaces have done their service and might as well 
disappear. In fact, Parnas stressed explicitly that after assembly, 
two differently modularized programs might conceivably be iden-
tical ([55], p.1055)—modularization is a design-time issue! Also, 
using the same argumentation one could demand that program-

                                                                 
19 The authors also touch on the verification problem mentioned in Sec-

tion 6.3.3, namely that aspects can break the postconditions of a method 
in a way that is outside the control of its programmer [10]. 

mers declare all members of all classes public, and only after sys-
tem composition derive which ones may be declared private. 
Last but not least, making interfaces aspect aware by adding the 
computed information which aspects apply to which members of 
the provided interface of a class does not really add to the inter-
face, since no client of the class except the aspect from which it 
has been computed will ever use this information (at least not in a 
way that is enforced by the compiler). Instead, these aspect-aware 
interfaces publish implementation details of the aspects, namely 
which aspect is called where. This in turn means that with the 
suggested aspect awareness of interfaces, non-locality20 is much 
the same as in conventional, procedure-call based implementa-
tions, which also need to import the modules containing the called 
procedures. So in a way, Kiczales and Mezini’s proposal seems to 
support my observation that the problems of AOP cannot be fixed 
without giving up its distinguishing characteristics. 

Aspectual Collaborations 
The Aspectual Collaborations of Ovlinger et al. [41, 52, 53] con-
tinue previous work on aspectual components, enabling recursive 
composition of collaboration patterns as modules. So-called as-
pectual methods extend the usual binding between expected (or 
required) and provided interfaces by allowing a form of method 
call interception across modules in which the intercepting and the 
intercepted method can remain oblivious of each other. Aspectual 
Collaborations can be used to implement crosscutting concerns 
such as caching; yet this requires an explicit composition (bind-
ing) of the (collaboration representing the) aspect and the (col-
laboration representing the) base. Therefore, Aspectual Collabora-
tions are more an exploitation of an aspect-oriented mechanism 
(method call interception, which is also a standard mechanism of 
metaprogramming) for the purpose of component-based pro-
gramming, than a general reconciliation of AOP with modularity. 

Information Transparency 
But there are other ways of addressing crosscutting. One such 
way is explored by Griswold in his work on information trans-
parency [26], a complement to information hiding that allows the 
ad hoc creation of localized descriptions of a design concern 
based on similarity of the scattered code implementing it. Gris-
wold describes his approach as relying on naming conventions 
and other characteristics of code (including the use of particular 
variables, data structures, etc.) that can be evaluated by a tool, and 
sometimes even architectural information. One could add that to-
day, source code annotations would lend themselves to explicitly 
associating code with concerns [56]. 
Perhaps the greatest advantage of information transparency over 
aspect-oriented approaches from a technical point of view is that 
it does not depend on weaving, that is, on the automatic tangling 
of code designed as separate units, but on its opposite, namely on 
the automatic disentangling of code designed to go together. In 
other words: rather than creating a system from different views of 
it, it creates different views of a system. Whether and how these 
views can be used to change and extend the system, however, re-
mains an open challenge. 

                                                                 
20 Here, locality refers to the property that all program elements relating to 

one concern are located in a single place, which is, according to Kicza-
les & Mezini [34], a necessary condition for modularity. 
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